Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соляная

    Кислотам противостоит группа веществ, называемых основани ями. (Сильные основания получили название щелочей.) Эти вещества имеют горький вкус, химически активны, меняют цвета-красителей, но на противоположные по сравнению с кислотами и т. д. Растворы кислот нейтрализуют растворы оснований. Другими словами, смесь кислоты и основания, взятых в определенной соотношении, не проявляет свойств ни кислоты, ни основания. Эта смесь представляет собой раствор соли, которая обычно химически значительно менее активна, чем кислота или основание. Таким образом, при смешении соответствующих количеств раство- ров сильной и едкой кислоты (соляной кислоты) с сильной и едкой щелочью (гидроксидом натрия) получается раствор хлорида натрия, т. е. обыкновенной поваренной соли. [c.53]


    Эти соединения легко разлагаются со взрывом. Моновинилацетилен получается пропусканием ацетилена через концентрированный раствор хлористого аммония и хлористой меди (одновалентной), слегка подкисленный соляной кислотой, при 60—70° и 2—3 ат. Продукты реакции пропускают через холодильник, где ббльшая часть воды отделяется от целевого продукта, имеющего температуру кипения 5°. Затем сырой винилацетилен конденсируется путем глубокого охлаждения и затем очищается ректификацией. [c.254]

    В промышленных условиях процесс ведут следующим образом (рис. 171).. Воздух и бензол каждый в отдельности подогревают и смешивают в смесителе. Воздуха — большой избыток, примерно 26—50 кг на 1 кг бензола. Печь состоит пз трубок с катализатором и снабжена соляной ванной для обогрева. В большинстве случаев для ванны применяют нитрат-нитритную смесь. В печи имеется приблизительно 3000 трубок, заполненных катализатором в виде пилюль диаметром 5 мм. Реакция идет под давлением 2—3 ат без циркуляции сырья, так как процесс окисления завершается за однократный проход реакционной смеси через печь. [c.268]

    Фотохимическое хлорирование можно проводить также в водной среде. Так, при пропускании этана и хлора при 40—50° через освещенную стеклянную трубку, заполненную 30%-ной водной соляной кислотой, быстро протекает реакция образования хлористого этила. Продукт хлорирования содержит 90% монохлорэтана и 10% дихлорэтана главным образом 1,1-дихлорэтана [23]. [c.148]

    Уловленный в поглотительной колонке 18 хлористый водород в виде соляной кислоты собирается в бачке 19, в то время как газы проходят через щелочную колонку 20 и засасываются насосом 21 и подаются снова на смешение с углеводородным сырьем. [c.163]

    Газы, выходящие из реакционной печи через упомянутый выше циклон 8, снабженный охлаждающей водяной рубашкой, поступают в чугунный оросительный холодильник 9 температура газа на входе в холодильник около 300", на выходе 30°. Отсюда для улавливания хлористого водорода газ поступает на абсорбционную установку 10, состоящую из шести стеклянных колонн, заполненных кольцами Рашига. На схеме показана лишь одна стеклянная абсорбционная колонна. Количество воды, орошающей абсорберы, подбирают так, чтобы в результате абсорбции получать соляную кислоту крепостью около 33% (удельный вес 1,160—1,165), которую сифоном переводят в сборник 11. [c.173]

    Производство хлористого этила прямым хлорированием этана привлекает в последние годы непрерывно растущий интерес. Около двух третей общего производства хлористого этила потребляется в промышленном производстве тетраэтилсвинца. Первоначально его вырабатывали взаимодействием этанола с соляной кислотой. Затем начало развиваться гидрохлорирование этилена. В настоящее время этот важный для промышленности хлористый алкил вырабатывают всеми тремя методами. Выделяющийся при хлорировании этана газообразный хлористый водород используется для гидрохлорирования этилена или для получения хлористого этила из этанола, что позволяет полностью использовать потребляемый хлор [69 ]. [c.175]


    Хлористый водород перед дальнейшей переработкой пропускают через резервуар со свежим пентаном, где он выполняет функцию превосходного осушителя, так как связывает даже следы влаги, образуя соляную кислоту, которая вследствие абсолютной нерастворимости в пентапе осаждается на дне резервуара, откуда периодически выпускается. [c.181]

    Температуру контролируют по показаниям трех термоэлементов, установленных на различной высоте в соляной бане. Требуемое давление в аппаратуре устанавливается при помощи азота. Реактор оборудован предохранительным клапаном, отрегулированным на давление 150 ат. [c.188]

    Нижний слой состоит из воды с небольшими количествами хлористого бутила, бутанола и соляной кислоты. [c.194]

    После добавки всего хлористого алкила температуру смеси поднимают до 180—190° и поддерживают на этом уровне 1—2 часа. Затем реакционную смесь охлаждают, медленно добавляют 150 частей 25%-ной соляной кислоты и кипятят при перемешивании до растворения всего цинка. После этого масло промывают, сушат и перегонкой под пониженным давлением удаляют избыток фенола и когазина И, содержащих некоторое количество олефиновых углеводородов. [c.246]

    Из восстановительных средств, действующих в кислой среде, например хлорид олова и соляная кислота [41], оловО и соляная кислота [42], цинк и серная [43], уксусная или соляная кислоты [44], наиболее надежными являются по исследованиям Джонсона [45] железо и соляная кислота. [c.275]

    Либавий первым описал приготовление соляной кислоты, тет рахлорида олова, сульфата аммония и царской водки (aqua regia) — смеси азотной и соляной кислот, получившей свое название из-з  [c.27]

    Наиболее видным представителем нового направления в химии был немецкий химик Иоганн Рудольф Глаубер (1604—1668). Врач по образованию, он занимался разработкой и совершенствованием методов получения различных химических веществ. Глаубер разработал метод получения соляной кислоты воздействием серной кислоты на поваренную соль. Тщательно изучив остаток, получаемый после отгонки кислот (сульфат натрия), Глаубер установил, что это вещество обладает сильным слабительным действием, Он назвал это вещество удивительной солью (sal mirabile) и считал его панацеей, почти эликсиром жизни. Современники Глаубера назвали эту соль глауберовой, и это название сохранилось до наших дней, Глаубер занялся изготовлением этой соли и ряда других, по его мнению, ценных лекарственных средств и достиг на этом поприще успеха. Жизнь Глаубера была менее богата бурными событиями, чем жизнь его современников, занимавшихся поисками путей получения золота, но она была более благополучной. [c.28]

    Дэви также показал, что зеленоватый газ, который открывший его Шееле (см. гл. 4) считал оксидом, в действительности является элементом. Дэви предложил назвать его хлорин (от греческого OOi upog — желто-зеленый). Позднее Гей-Люссак сократил это название хлора. Дэви доказал, что соляная кислота, будучи сильной кислотой, не содержит атома кислорода в своей молекуле, и, таким образом, опроверг предположение Лавуазье, который рассматривал кислород как необходимый компонент всех кислот (см. гл. 4.) [c.66]

    В каталитическом крекинге применяются природные или синтетические катализаторы. В качестве природных катализаторов используется отбеливающая земля типа монтмориллонита, активированная соляной кислотой. Синтетический катализатор состоит примерно из 10% окиси алюминия и 90% кремневой кислоты. Каталитический крекинг имеет еще и другие-преимущества перед термическим. Процесс может идти или с неподвижным (процесс Гудри) [7] или с подвижным катализатором. В последнем способе-может применяться гранулированный или пылевидный катализатор [8]. Важнейшим способом каталитического крекинга является каталитический [c.40]

    Линии I — хлор П — бензол III — отходящие газы IV — соляная кислота V — беизол обратно па алкилирование VI — углеподороды и хлорированные углеводороды VII — песульфнроваииые углеводороды VIII — отработанная серная кислота IX — сульфированные углев(.1Дород1)1 X — гинохлорит XI — сульфонатный раствор. [c.124]

    Продукты реакции охлаждают и в ректификационной колонне нри температуре верха колонны —40° отделяют хлористый водород п пропен от хлористого аллила и других хлорпроизводных углеводородов. Из смеси пропена с хлористым водородом последний отмывают водой, получая в результате 32%-ную соляную кислоту. После длительной промывки для удаления следов хлористого водорода нронен возвращается в процесс. [c.170]

    В реакционной колонне при помощи водяного охлаждения поддерживается температура 50—60°. Выходящий из верха реакционной колонны раствор хлоргидрина и соляной кислоты сразу поступает па дальнейшую переработку в окись этилена, так как выделение 100%-ного хлоргидрина из такого раствора не целесообразно. Для получения окиси этилена выходящий из хлоргидринирующей колонны раствор, содержащий приблизительно 10% хлоргидрина, вливается в 12%-ный раствор гидроокиси кальция (известковое молоко). При этом образуются окись этилена и хлористый кальций. Окись этилена, кипящая при 12°, отгоняется, раствор хлористого кальция дренируется. [c.183]


    Линии I — этилен II — хлористый водород Ш — катализатор, растворенный в хлористом этиле IV — свежий катализатор V — отработанный катализатор VI — вода VII—разбавленная соляная кислота VIII— хлористый этил IX — остаток. [c.198]

    Способ состоит в том, что ацетилен и синильную кислоту в молярном соотношепии 10 1 подают в пасыщ,енный при 40° раствор хлористой меди (одновалентной) и хлористого алюминия, подкисленный соляной кислотой до pH = 3,5 (рис. 151). При этом в реакцию вступает около 10% ацетилена, так что синильная кислота используется практически без остатка. Реакция идет при температуре около 80°. На 1 л катализаторной жидкости в час образуется 15—18 г нитрила. После одного-двух месяцев работы катализатор долгкен регенерироваться. Давление в процессе немного выше атмосферного. [c.247]

    Она основана на воздействии карбонила никеля на ацетилен и идет без применения давления в присутствии соляной кислоты. В присутствии спиртов образуется соответствующий эфир акриловой кислоття. Выход составляет до 9Г)% от теоретического. Реакция может быть представлена следующим образом  [c.254]

    Пары о-ксилола из обогреваемого водяным наром испарителя поступают в смеситель, где смешиваются с предварительно фильтрованным воздухом, сжатым до необходимого давления и подог эетым (рис. 169). Полученная таким образом газовая смесь подается в реакционную печь. Катализатор п печи находится в трубчатом коллекторе, окруженном соляной ванной для отвода тепла. Соляной раствор непрерывно циркулирует через холодильник. Выходящие из печи газы поступают в котел, где отдают свое тепло для генерации водяного пара, а затем направляются в конденсатор, где происходит полная конденсация их. Отсюда твердый продукт периодически отбирают в плавильную установку, где он освобождается от влаги. В заключение продукт подвергают перегонке, отбирая в качестве главной фракции фталевый ангидрид. [c.263]

    Кроме рассмотренных выше способов, углеводород можно получить из кетона восстановлением его во вторичный спирт с последующим замещением гидроксильной группы галоидом (лучше всего иодом) и восстановлением атомарным водородом in statu nas endi, получаемым, например, взаимодействием цинка с соляной кислотой под атмосферным давлением. [c.61]

    Так, например, хлористый этилен при 300—425° можно хлориро- вать в ржплавленной соляной бане с образованием 1,1,2-трихлор-этана. При более высоких температурах в качестве основных продуктов реакции образуются ди- и трихлорэтилен. Образование этих соединений объясняется отщеплением хлористого водорода от трихлорэтана и тетрахлорэтапа при указанных высоких температурах. Этим же способом можно также проводить хлорирование бензола. [c.155]

    II—сборник соляной кислоты 12 — водяной скруббер 13—щелочной скруббер 14—осушительная колонна (орошение серной кислотой) 15—насос 16—известкова51 колонна 17—компрессор 18—холодильник 19 — щелочная колонка 20—ректификационные колонны /, Л, III и IV 21—сборник 22 — емкость для дихлорэтана 23—холодильник 24—осушитель 25—емкость для хлористого этила 26 — [c.172]

    Отдельные колонны отключают при помощи керамических кранов. Сборник соляной кислоты — чугунный, изнутри гуммирован и облицо- ван керамической плиткой. [c.173]

    Выходящие из абсорбционных колонн газы направляются на вторичную абсорбцию в скруббер 12 для окончательной очистки. Здесь путем орощения большим количеством воды улавливаются остаточные количества хлористого водорода с образованием 1—2%-ной соляной кислоты, которую сбрасывают в канализацию. Абсорбционная колонна изгофовлена из чугуна с облицовкой из полихлорвинила (игелит) и заполнена кольцами Рашига. [c.174]

    К отходящим из колонны газам добавляют свежий пропан для того, чтобы сильным разбавлением предотвратить конденсацию монохлорпроизводных в следующей аб00рбци10нн0Й колонне, в которой получают соляную кислоту. Влажные газы осушают в двух колоннах, орошаемых серной кислотой, причем одновременно удаляют также следы пропилена и хлористого пропилена, образующихся при пиролизе в реакторе. [c.176]

    Затем хлористый водород поступает на абсорбционную установку, оборудованную турнллами из силикатного материала, для производства соляной кислоты плотностью 20° Бе, совершенно не содержащей серной кислоты, Проиэ водство соляной кислоты достигает около 33 т сутки. [c.182]

    Тп — Нагрево М переводят хлористую медь в раствор, затем через барботер пропускают газообразный хлористый водород, который сразу поглощается раствором. После непродолжительного времени появляются первые пары хлористого бутила, которые поступают в колонну, где конденсируется увлеченный бутанол. С верха колонны отгоняются в виде азеотропной смеси хлористый бутил, вода п спирт, поступающие в холодильник, Температуру верха колонны поддерживают около 80°. Дистиллят разделяется на два слоя. Верхний слой состоит из смеси хлористого бутила, бутанола и небольшого количества соляной кислоты. Его осушают и направляют на ректификацию. Таким путем получают первичный хлористый бутил и небольшое количество вторичного хлористого бутила, образование которого, вероятно, объясняется присоединением хлористого водорода в присутствии хлористой меди к образующемуся в качестве промежуточного продукта бутилену  [c.194]

    Высокомолекулярные хлористые алкилы образуются при теломеризации этилена с хлористым водородом в присутствии свободных радикалов [129]. Например, нагревом до 100° этилена с соляной кислотой в авто клаве из коррозийностойкого материала в течение нескольких часов при энергичном перемешивании и давлении этилена примерно 400—600 ат в присутствии таких образующих радикалы веществ, как перекись бензоила, третраэтилсвинец, азодинитрилы и т. д., получают смеси хлористых алкилов нормального строения с четным числом углеродных атомов, которые легко могут быть разделены ректификацией на индивидуальные соединения. В отсутствие свободных радикалов хлор-этил В результате присоединения хл1ористого водор ода никогда не образуется. [c.196]

    В табл. 67 приведены некоторые результаты, лолученные в опытах с перекисью бензоила в качестве источника свободных радикалов. В автоклаве с мешалкой (изготовленном из соответствующего материала) к 100 г 18,5%-ной соляной кислоты добавляют 0,5 г перекиси бензоила и действуют этиленом при начальном давлении 200 ат. После нагрева до 100° давление этилена поддерживают на уровне около 500 ат. Спустя примерно 11 час. образовавшиеся хлористые алкилы обрабатывают эфиром. При этом остается нерастворенной часть продуктов реакции, состоящая из хлоридов высокомолекулярных алкилов, содержащих 40—50 углеродных атомов в молекуле. [c.196]

    Теломернзация этилена соляной кислотой в присутствии перекиси бензоила [c.197]


Смотреть страницы где упоминается термин Соляная: [c.20]    [c.31]    [c.32]    [c.33]    [c.114]    [c.124]    [c.169]    [c.183]    [c.61]    [c.162]    [c.169]    [c.176]    [c.189]    [c.193]    [c.194]    [c.197]    [c.230]   
Основы химии Том 2 (1906) -- [ c.32 , c.144 , c.273 , c.304 , c.317 , c.590 ]




ПОИСК







© 2025 chem21.info Реклама на сайте