Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Седиментационное равновесие и молекулярный вес

    Если в системе силы тяжести полностью уравновешены силами диффузии, наступает так называемое седиментационное равновесие, которое характеризуется равенством скоростей седиментации и диффузии. При этом через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком. Седиментационное равновесие наблюдается не только в коллоидных растворах, но и в молекулярно-дисперсных системах. Это равновесие характеризуется постепенным уменьшением концентрации частиц в направлении от нижних слоев к верхним. Распределение частиц в зависимости от высоты столба жидкости подчиняется гипсометрическому (или барометрическому) закону Лапласа в применении к золям при [c.307]


    Чрезвычайное значение центробежного поля для физики и физической химии основано на том факте, что в ультрацентрифугах, сконструированных впервые Сведбергом (1924), можно достигнуть ускорений примерно до 10 g. При этих условиях седиментационное равновесие, не имеющее значения в поле тяготения, используется для того, чтобы либо разделить компоненты смеси (препаративная ультрацентрифуга), либо по уравнению (54.8) определить молекулярный вес (аналитическая ультрацентрифуга). По экспериментальным причинам для последней цели используют почти исключительно измерение скорости седиментации. Теория этого последнего метода основана на термодинамике необратимых процессов. Поэтому не будем здесь останавливаться на подробностях и отошлем читателя к специальным учебникам. [c.282]

    При ультрацентрифугировании раствор исследуемого полимера помещают в кювету, закрепленную во вращающемся роторе. В зависимости от применяемого метода можно получить либо среднемассовое значение молекулярной массы (метод определения скорости седиментации при больших частотах вращения - метод скоростной седиментации), либо средневзвешенное значение (метод седиментационного равновесия, осуществляемый при меньших частотах вращения). Результаты измерения получают в виде кривых распределения по константам седиментации, по которым рассчитывают молекулярную массу. [c.176]

    Чем объяснить различия в значениях средних молекулярных масс, определенных диффузионным методом и методом седиментационного равновесия  [c.74]

    Кроме скоростных ультрацентрифуг, применяемых при измерении скорости седиментации (значительно преобладающей над процессами диффузии), применяют также ультрацентрифуги с меньшим числом оборотов (до 20 ООО об/мин), в которых скорости седиментации и диффузионного переноса близки и поэтому устанавливается седиментационное равновесие. Молекулярный вес при определении по методу седиментационного равновесия, [c.44]

    Описанный выше способ разделения высокомолекулярных соединений и определения их молекулярных масс называется методом скорости седиментации, так как в его основе лежит различие скорости движения частиц, которая определяется массой частиц. Наряду с этим существует другой способ разделения с помощью ультрацентрифугирования, называемый методом седиментационного равновесия основанный на различии в распределении частиц с разной массой в поле тяжести или в центробежном поле в условиях равновесия. [c.335]


    При определении молекулярной массы по методу седиментационного равновесия знание коэффициента диффузии не является необходимым. В этом случае используют более низкое число оборотов. По сравнению с предыдущим методом, для которого необходимо гравитационное поле до 400 ООО g, здесь достаточно центробежной силы, в 10 — 15 тыс. раз превосходящей земное притяжение. Через несколько часов или через несколько суток процесс седиментации и обратной диффузии достигает состояния равновесия, при котором перемещение частиц отсутствует. Измерив градиент концентрации белка от мениска до дна ячейки, можно вычислить его молекулярную массу. Медленное установление равновесия — недостаток метода. Этого можно избежать при проведении определения по Арчибальду. В этом низкоскоростном методе для расчетов можно использовать градиент концентрации, образующийся в измерительной ячейке у мениска жидкости (до отделения белковой зоны). Метод нулевой концентрации в мениске, предложенный в 1964 г., делает возможным достижение седиментационного равновесия при высокой скорости ротора (высокоскоростной метод), в этом случае белковая зона уже отделена от мениска. Это дает возможность сократить время эксперимента до 2 — 4 ч. [c.361]

    Каждая частица (макромолекула) в растворе находится под действием двух сил силы тяжести и теплового движения. В равновесном состоянии в столбе жидкости (раствора) концентрация одинаковых по массе и размеру частиц вверху меньше, чем внизу. Определяя концентрацию вешества на двух уровнях по высоте столба жидкости, можно оценить величину молекулярной массы. Однако для достижения такого равновесия требуется практически бесконечное время, потому что установлению такого седиментационного равновесия препятствует броуновское движение частиц. Для сокращения длительности опыта можно увеличить сообщаемое частицам ускорение. [c.45]

    Молекулярно-кинетическая теория рассматривает коллоидные системы как частный случай истинных растворов дисперсную фазу — как растворенное вещество, дисперсионную среду — как растворитель. Это позволяет вполне удовлетворительно объяснить явления осмоса, диффузии,, седиментационного равновесия и другие неспецифические свойства коллоидов (т. е. свойства, не связанные с проявлением молекулярных взаимодействий на поверхности коллоидных частиц). [c.19]

    Благодаря вышеуказанным возможностям ультрацентрифуга получила широкое применение. По-видимому, принципиальные возможности этого метода еще не исчерпаны. Например, многокомпонентную систему при седиментационном равновесии можно разделить, подвергнув ее воздействию еще какого-нибудь однородного поля. Тогда можно одновременно определять и количество частиц, и их молекулярное массы. Автор теоретически показал (1953 г.), что такая возможность существует при обратной седиментации, если помимо центробежного поля на систему наложить электрическое поле. [c.66]

    У.8.9. Вычислить среднюю молекулярную массу гемоглобина по опытным данным Сведберга. Седиментационное равновесие наступило через 39 ч при Т=293 К. Частота вращения центрифуги п=8700 об/мин плотность растворителя ро= 1,008-10 кг/м удельный объем гемоглобина 0 = 0,749-10 м /кг. Концентрация гемоглобина и с. на расстояниях к,, и /г от оси вращения ротора центрифуги приведены в таблице  [c.122]

    По данным, полученным тем или иным способом, можно вычислить скорость седиментации или найти седиментационное равновесие. На основании этого, в свою очередь, можно рассчитать молекулярный вес или размер частиц, подвергающихся седиментации. [c.79]

    Размер коллоидных частиц, как уже указывалось, можно найти не только по скорости седиментации в ультрацентрифуге, но и определяя седиментационное равновесие. Для этой цели применяют центрифугирование при не слишком больших частотах вращения (обычно около 20 000 об/мин), так как иначе превалировала бы седиментация и равновесие не устанавливалось. Численный или молекулярный вес, найденный по седиментационному равновесию, отвечает равновесному распределению частиц в системе, он не зависит от способа достижения этого распределения, и, следовательно, на результатах анализа не может сказываться форма частиц и их сольватация. [c.80]

    Метод равновесной седиментации в градиенте плотности основан на следующем. Если поместить в ячейку центрифуги смесь низкомолекулярных жидкостей (растворителей) различной плотности, то при сильном центробежном ускорении (более 10 м/с ) через некоторое время в кювете установится седиментационное равновесие, т.е. в радиальном направлении возникнет постоянный во времени градиент плотности. Если в таком бинарном растворителе содержится полимерный компонент с плотностью, промежуточной между плотностями элементов растворителя, то полимер начнет собираться в полосы в тех местах кюветы, где его плотность равна плотности бинарного растворителя. Чем ниже молекулярная масса, тем больше коэффициент диффузии и тем сильнее размывается эта полоса (изоденса). Для сополимеров (если сомономеры имеют разные плотности) в результате установления равновесия могут появиться несколько полос макромолекулы с различной плотностью соберутся в разные полосы. Следует отметить, что метод применим для молекулярных масс выше критической, иначе ширина полосы становится соизмеримой с длиной ячейки. [c.325]


    Особого внимания заслуживает метод определения молекулярного веса по седиментационному равновесию, так как в этом случае в расчетную формулу не входит время анализа и сила трения и, следовательно, исключаются те произвольные допущения в отношении формы частиц, к которым приходится прибегать при использовании других молекулярно-кинетических методов. [c.425]

    Это соотношение описывает распределение концентраций частиц вдоль оси пробирки при установлении равенства встречных потоков диффузии и седиментации, т. е. при седиментационном равновесии. Нетрудно видеть, что, измеряя концентрацию исследуемого вещества вдоль ячейки после установления равновесия (это можно сделать в аналитической ультрацентрифуге), легко определить молекулярную массу полимера. Действительно, из (18.20) следует, что если концентрация исследуемого полимера в точках, находящихся на расстоянии r и Га от оси ротора, равна соответственно i и Сг, то [c.336]

    Определение молекулярных весов можно проводить также, исходя из условий седиментационного равновесия [c.385]

    Существует несколько физических методов абсолютного измерения молекулярных масс, в первую очередь основанных на использовании седиментации или рэлеевского рассеяния света. Они требуют существенно большего количества индивидуального биополимера, чем описанные химические и биохимические методы, проводятся путем прецизионных измерений на дорогостоящем оборудовании и применительно к задаче измерения молекулярных масс белков и нуклеиновых кислот постепенно утрачивают свое значение. Седиментационные методы основаны на использовании уравнений (7.2) или (7.3). В первом случае измерению подлежат константа седиментации биополимера и коэффициент диффузии. Во втором случае нужно достичь состояния седиментационного равновесия и измерить распределение концентрации исследуемого биополимера вдоль центрифужной ячейки, т.е. концентрацию биополимера на нескольких разных расстояниях г от оси ротора. Оба метода требуют определения парциального удельного объема, или, что то же самое, плавучей плотности биополимера в условиях, используемых для седиментации. [c.267]

    Изучая седиментационное равновесие (определяя по высоте раствора плотпость, коэффициент преломления или какие-либо другие физические величины), можно сделать заключение о фракционном составе суспензии или ВМС, определить средний молекулярный вес растворенного вещества. [c.387]

    Неионогенные ПАВ в водных растворах образуют мицеллы, веса которых составляют обычно несколько десятков тысяч. Их можно определить различными методами (измерениями светорассеяния, диффузии, по скорости седиментации и седиментационному равновесию), которые применяются и для определения молекулярных весов высокополимеров. Из этих методов для определения мицеллярных весов очищенных неионогенных ПАВ в водных растворах применялись методы светорассеяния и комбинированный метод измерения диффузии и вязкости. [c.133]

    Как и при определении численного веса коллоидных систем, для определения молекулярного веса полимеров применяются два метода по скорости седиментации и по седиментационному равновесию. Второй метод обладает тем преимуществом, что полученные с его помощью результаты не зависят от формы частиц недостатком же его является длительность установления седиментационного равновесия. , [c.457]

    Для оценки устойчивости нефтяной дисперсной системы при нагреве, когда усиливаются процессы диспергирования сложных структурных единиц и система стремится к состоянию истинного молекулярного раствора с бесконечной устойчивостью против расслоения, введено понятие термодинамической устойчивости [26]. Термодинамическая седиментационная устойчивость, обусловленная статическими законами диффузии, связана с дифф) зионно-седиментационным равновесием. Мерой ее является высота Ие, на протяжение которой концентрация дисперсной фазы изменяется в е раз  [c.28]

    У рапса молекулярная масса глобулинов этого типа, установленная методами седиментационного равновесия [44] и электрофореза в полиакриламидном геле, оказалась значительно меньше — соответственно 130 000 и 150 000 Да. По мнению этих последних авторов, заниженные значения молекулярной массы обусловлены неправильной оценкой парциального удельного объема макромолекулы. Эта фракция семян рапса по изоэлектрической точке—pH 7,2 [102] отличается от аналогичных фракций семян бобовых — pH 4,8 [30] и подсолнечника — pH 4,7 [103]. [c.156]

    Седиментационное равновесие. В умеренных гравитационных полях устанавливается равновесие между миграцией и противодействующими силами (такими, как броуновское движение). При равновесии молекулярный вес М растворенных веществ на расстояниях и х от оси вращения связан с их концентрациями и g следующим соотношением [c.49]

    ИЛИ по распределению вещества в центрифужной ячейке в равновесных условиях (метод седиментационного равновесия) оценить степень его полидисперсности и рассчитать молекулярный вес. [c.516]

    Молекулярная масса в ультрацентрифуге может быть определена не только по скорости седиментации, но также путём исследования распределения концентраций после установления равновесия между оседанием частиц и обратным процессом диффузии (седиментацион-ное равновесие). Если при первом методе роль диффузионных процессов сравнительно невелика, то при седиментационном равновесии благодаря применению сравнительно слабых центробежных полей скорости седиментации и диффузионного переноса вещества близки. При равновесии эти скорости становятся равными, и перенос растворенного полимера прекращается. [c.543]

    Метод вычисления молекулярного веса по седиментационному равновесию обладает несомненным преимуществом по сравнению с методом вычисления его по скорости седиментации, так как в этом случае не требуется производить никаких других измерений. Этот метод является с точки зрения термодинамики наиболее применимым по отношению к разбавленным растворам сферических и не слишком удлиненных частиц, но при чрезмерном удлинении частиц затрудняется экспериментирование с сильно разбавленными растворами. Мозиман [116] показал недавно, что по седиментационному равновесию молекулярный вес нитрата целлюлозы можно точно определить лишь до значений порядка 80 ООО (степень полимеризации примерно 300). [c.212]

    Средняя молекулярная масса нефракционированного полимера зависит от метода ее определения. Например, осмометрией находят среднечисловое значение, а по светорассеянию — среднемассовое. При описании молекулярно-кинетических свойств приводились некоторые методы определения молекулярных масс осмометрия, седиментация и седиментационное равновесие в центробежном поле. В дополнение к ним применяется также вискозиметрнческий метод. [c.212]

    В заключение упомянем еще два метода определения молекулярного веса, которые также основаны на уравнении (55.5), но практически (так же как непосредственное измерение осмотического давления) применяются только для растворов макромолекулярных соединений. Первым из них является рассмотренное в 54 седиментационное равновесие в ультрацентрифуге. Этот метод, как было упомянуто, не имеет пока большого значения. Второй метод использует измерення рассеяния света растворами. Общие основы теории изложены в более подробных работах по статистической термодинамике, в то время как применение к растворам макромолекулярных соединений следует искать в специальной литературе. [c.291]

    У.9.64. По данным Сведберга, седиментационное равновесие в растворе белка установилось через 48 ч при частоте вращения центрифуги = 6900 об/мин. Температура Т = 291К, удельный объем о = 0,745-10 м /кг плотность растворителя ро = 1,008 Ю кг/м . Определить среднюю молекулярную массу белка по следующим значениям расстояний Н от оси вращения центрифуги и соответствующим им значениям концентрации  [c.133]

    На заре развития коллоидной химии считалось, что коллоидным растворам не присущи явления диффузии и осмоса. Эта особенность коллоидных растворов считалась одной из их отличительных признаков. Однако использование более точных методов исследования показало, что это не так. Более того, изобретение з льтрамикроскопа (1903 г.) позволило непосредственно наблюдать движение отдельных коллоидных частиц, связать интенсивность этого движения с величиной коэффициента диффузии. Наблюдение за поведением отдельных коллоидных частиц позволило проверить и подтвердить расчеты, базирующиеся на молекулярно-кинетичес1шй теории, формулы диффузии, седиментационного равновесия и т. д. [c.397]

    При изучении седиментационного равновесия олучают информацию о а) средневесовом молекулярном весе (М ) и 2-среднем молекулярном весе (Мг) (в том случае, когда инкременты плотности и показателя преломления равны для всех полимерны)  [c.119]

    Измерения седиментационного равновесия в градиенте плотности дают информацию о средневесовом молекулярном весе (Л7ш) и химической неоднородности макромолекул. [c.123]

    Седиментационное равновесие используется также для того, чтобы установить градиент плотности, обусловленный веществом с низким молекулярным весом (например, s I), так что смесь макромолекул можно разделить на зоны по их плотностям. В градиенте плотности вещество стремится перейти на уровень, где его плотность равна плотности раствора. В 1957 г. Мезельсон, Сталь и Виноград применили градиенты s l (образованные седиментационным равновесием примерно из [c.616]

    Когда усиливаются процессы диспергирования и система стремится к состоянию истинного молекулярного раствора с бесконечной устойчивостью против расслоения, вводится понятие термодинамической устойчивости, которая обусловлена статистическими законами диффузии, связана с дифузионно-седиментационным равновесием. Мерой ее является высота К-, на протяжении которой концентрация дисперсной фазы изменяется в е раз кт [c.118]

    При определении молекулярных масс в ультрацентрифуге [67 — 69 различают метод измерения скорости седиментации и оавновесное центрифугирование. В то время как в первом случае измеряют скорость седиментации, во втором — определяют положение седиментационного равновесия. [c.360]

    Оказалось, что частицы коллоидных растворов в данном ел чае ведут себя подобно ионам, и это обстоятельство привело мысли, что коллоидные растворы могут быть широко использс ваны как модели при изучении молекулярно-кинетически явлений. В 1908 г. Ж. Перрен произвел свой знаменитый опы седиментационного равновесия отфракционированных по ра мерам шариков гуммигута. На основании этого равновесия был рассчитана постоянная Авогадро. Опыт Ж. Перрена также весь ма наглядно продемонстрировал причины броуновского движе ния микроскопических частиц и доказал реальность молекуляр ного движения. [c.254]


Смотреть страницы где упоминается термин Седиментационное равновесие и молекулярный вес: [c.41]    [c.27]    [c.689]    [c.113]    [c.181]    [c.202]    [c.45]   
Химия полимеров (1965) -- [ c.311 ]




ПОИСК





Смотрите так же термины и статьи:

Седиментационная



© 2024 chem21.info Реклама на сайте