Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий кислорода

    Рассмотрим теперь изменение энергий ионизации во втором периоде. Элементы этого периода имеют следующие величины /4 (эВ) 5,39(Ь1) 9,32(Ве) 8,30(В) ]1.26(С) 14,53(Н) 13,61(0) 17.42(Р) 21,5б(Не). Таким образом, при переходе от Ь к Не происходит возрастание энергии ионизации. Это объясняется увеличением заряда ядра (число электронных слоев при этом остается одним и тем же). Однако, как видно из приведенных данных, возрастание /1 происходит неравномерно у следующих за бериллием и азотом бора и кислорода наблюдается даже некоторое уменьшение / 4. Эта закономерность вытекает из особенностей электронного строения. У бериллия, имеющего конфигурацию 15 252, внешняя 5-оболочка заполнена, поэтому у следующего за ним бора, электрон поступает в / -оболочку /7-электрон менее прочно связан с ядром, чем 5-электрон, поэтому первая энергия ионизации у бора меньше, чем у бериллия. Строение внешнего электронного слоя атома азота в соответствии с правилом Хунда выражается схемой [c.76]


    Из данных табл. 5 видно, что общая тенденция к возрастанию энергии ионизации в пределах периода в некоторых случаях нарушается. Так, потенциалы ионизации атомов бериллия и азота выше, чем атомов следующих за ними элементов бора и кислорода аналогичное явление наблюдается и в третьем периоде при [c.102]

    На рис. 17 сравниваются энтропии соединений металлов подгруппы бериллия с двумя элементами второго периода — кислородом и фтором. Даже учитывая недостаточную достоверность многих из сопоставляемых величин можно говорить о параллелизме роста 5298 с изменением [c.42]

    Постоянную степень окисления имеют щелочные элементы (+1), бериллий, магний, щелочноземельные элементы (+2), фтор (-1). Д.ая водорода в большинстве соединений характерна степень окисления - -1, а в его соединениях с з-элементами и в некоторых других соединениях она равна -1. Степень окисления кислорода, как правило, равна -2 к важнейшим исключениям относятся пероксидные соединения, где она равна —, и фторид кислорода ОГг, в котором степень окисления кислорода равна -Ь2. [c.261]

    Гибридизация в молекулах аммиака и воды. Мы вкратце обсудили геометрическое строение соединений бериллия, бора и углерода, пользуясь концепцией гибридизации. При дальнейшем движении по периоду вправо мы переходим к соединениям азота и кислорода, геометрия которых уже обсуждалась в рамках чистых р-орбиталей. Такое рассмотрение нельзя признать целиком удовлетворительным, если помнить, что экспериментальные значения валентных углов в молекулах HgN (107°18 ) и Н О (104°ЗГ) больше, чем между чистыми р-орбиталями (90°). С другой стороны, экспериментальные величины гораздо ближе к 109°28 — тетраэдрическому углу при sp -гибридизации связей. Так возникла идея о существовании общей для всех элементов второго периода гибридизации атомных s- и р-орбиталей. В применении к молекулам HgN и HjO это выглядит так, как показано на рис. III. 15. Октет электронов вокруг каждого центрального атома располагается на четырех sp -гибридных орбиталях, причем в моле- [c.183]

    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]


    Из данных табл. 3.4 видно, что общая тенденция к возрастанию энергии ионизации в пределах периода в некоторых случаях нарушается. Так, энергии ионизации атомов бериллия и азота выше, чем атомов следующих за ними элементов бора и кислорода аналогичное явление наблюдается и в третьем периоде при переходе от магния к алюминию и от фосфора к сере. При этом повышенные значения энергий ионизации наблюдаются либо у атомов с полностью заполненным [c.83]

    При переходе от лития к фтору Г происходит закономерное ослабление металлических свойств и усиление неметаллических с одновременным увеличением валентности. Переход от фтора Г к следующему по значению атомной массы элементу натрию Ыа сопровождается скачкообразным изменением свойств и валентности, причем натрий во многом повторяет свойства лития, будучи типичным одновалентным металлом, хотя и более активным. Следующий за натрием магний во многом сходен с бериллием Ве (оба двухвалентны, проявляют металлические свойства, но химическая активность обоих выражена слабее, чем у пары Ы — Ыа). Алюминий А1, следующий за магнием, напоминает бор В (валентность равна 3). Как близкие родственники похожи друг на друга кремний 81 и углерод С, фосфор Р и азот Ы, сера 8 и кислород О, хлор С1 и фтор Г. При переходе к следующему за хлором в последовательности увеличения атомной массы элементу калию К опять происходит скачок в изменении валентности и химических свойств. Калий, подобно литию и натрию, открывает ряд элементов (третий по счету), представители которого показывают глубокую аналогию с элементами первых двух рядов. [c.20]

    К металлам, не удовлетворяющим условию сплошности при окислении их кислородом, относятся все щелочные и щелочноземельные металлы (за исключением бериллия), в том числе имеющий большое техническое значение магний (табл. 4). [c.33]

    Рассчитать кажущуюся энергию активации процесса окисления бериллия кислородом, если скорость процесса при 600 К 6,1-Ю , а при 1000 К 39,0-10 г/см -с О. Рассчитать предэкспоненциальный множитель и вывести кинетическое уравнение. [c.231]

    Из возможных компонентов системы бериллий—кислород—водород в Справочнике рассматриваются Ве, ВеО и ВеН. В литературе имеются данные, свидетельствующие о том, что в некоторых условиях в системе Ве—О—Н, помимо трех рассмотренных компонентов, могут существовать такие молекулы, как Ве(ОН)г и, может быть, ВеОН [1865]. В связи с отсутствием данных о молекулярных постоянных и теплотах образования этих соединений они не рассматриваются в настоящем Справочнике. [c.786]

    Система уран — бериллий — кислород [c.94]

    Сродство к кислороду у бериллия и его аналогов очень велико [c.314]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Литий — одновалентный металл, энергично разлагающий воду с образованием щелочи. За литием идет бериллий — тоже металл, но двухвалентный, медленно разлагающий воду при обычной температуре. После бериллия стоит бор — трехвалентный элемент со слабо выраженными неметаллическими свойствами, проявляющий, однако, некоторые свойства металла. Следующее место в ряду занимает углерод — четырехвалентный неметалл. Далее идут азот — элемент с довольно резко выраженными свойствами неметалла кислород — типичный неметалл наконец, седьмой элемент фтор — самый активный из неметаллов, принадлежащий к группе галогенов. [c.72]

    Электрохимические процессы широко используются в современной технике, в аналитической химии, в научных исследованиях. Так, электрохимическим методом в промышленности получают металлы (алюминий, цинк, никель, магний, натрий, литий, бериллий и др.), хлор, гидроксид натрия, водород, кислород, ряд органических соединений, рафинируют металлы (медь, алюминий). Электрохимические методы широко используют для нанесения металлических покрытий, для полирования, фрезерования и сверления металлов. С каждым днем все больше применяются химические источники электрической энергии — гальванические элементы и аккумуляторы — в технике и научных лабораториях. В аналитической практике и научных исследованиях широко применяют такие электрохимические методы исследования, как потенциометрический, полярографический и т. п. Электрохимические системы в виде так называемых хемотронных приборов с успехом применяют в электронике и вычислительной технике. [c.313]

    Если теперь рассмотреть элементы от натрия до аргона, то нетрудно заметить, что они в значительной степени повторяют свойства элементов от лития до неона. Причем повторение проявляется в определенной последовательности натрий повторяет свойства лития, магний — бериллия, алюминий—бора, кремний — углерода, фосфор — азота, сера — кислорода, хлор —фтора, аргон —неона, т. е. каждый восьмой элемент повторяет свойства первого. Следующий за аргоном калий повторяет свойства натрия и лития, кальций—магния и бериллия и т. д., иначе говоря, свойства элементов периодической системы повторяются. [c.56]


    В настоящей главе рассматриваются термодинамические свойства бериллия и некоторых его простых соединений с кислородом, водородом, фтором, хлором и азотом. Более сложные соединения бериллия с этими элементами (ВеНа, ВеОН, Ве(0Н)2, ВезМг и т. п.) не рассматриваются в первую очередь вследствие отсутствия в литературе данных об их строении и молекулярных постоянных. Можно предполагать, что большинство таких сложных молекул будут нестойкими при высоких температурах, и термодинамические расчеты, проводимые без учета их образования, будут приводить к результатам, близким к истинным. Однако делать такого рода прогнозы нужно с большой осторожностью, так как результаты последних масс-спектрометрических работ показывают, что во многих случаях наблюдается обратная картина — при высоких температурах в насыщенных парах сложные молекулы становятся относительно более стабильными. Так, при испарении окиси бериллия было обнаружено [1106], что при высоких температурах все большее значение приобретают полимерные молекулы (ВеО) . Кроме того, в восстановительных условиях важную роль может играть молекула Ве20[72]. Из продуктов испарения окиси бериллия в Справочнике рассматриваются только Ве и ВеО. Поэтому эти данные недостаточны для полного описания системы бериллий — кислород, они могут дать сведения только о количествах атомарного бериллия и окиси бериллия в парах. [c.786]

    В настоящей главе рассмотрены термодинамические свойства магния и его простейших соединений с кислородом, водородом, фтором, хлором и азотом. Рассматривается также ионизованный одноатомный магний, образование которого возможно в системах, содержащих магний, при температурах 5000—6000° К. Имеющиеся данные позволяют считать систему магний — кислород более простой по сравнению с аналогичной системой бериллий — кислород. Масс-спектрометрическое исследование состава продуктов испарения MgO [3305] показало, что в парах присутствуют только Mg и MgO. Отсутствие устойчивых газообразных гидроокисей магния [2626] позволяет полагать, что и система магний—кислород— водород также достаточно полно описывается приведенными данными. Низкое значение энергии диссоциации молекулы Mga (7,2 ккал/моль [3813, 29]) позволяет исключить эту молекулу из числа рассматриваемых компонентов. В Справочнике рассматриваются все известные соединения магния с фтором и хлором MgF, MgF a, Mg l и Mg lg. Сведения о существовании полимерных молекул типа (MgXa) в литературе отсутствуют. [c.809]

    Как видно из таблицы, освоенные в настоящее время топлива для ЖРД, составленные из горючих элементов углерода и водорода и окислительного элемента кислорода, имеют наиболее низкий запас химической энергии. Ряд горючих, например бериллий, литий и другие металлы, имеет значительно ббльшую (в 2—2,5 раза) теплоту сгорания в паре с кислородом и фтором, чем другие виды горючего, и относительно высокую плотность (1,73—2,70 г1см ). Благодаря большой плотности металлов объемная теплота сгорания их весьма велика. Например, у топливной пары бериллий — кислород она равна 8850 ккал л, магний — фтор — 5550 ккал л. В связи с этим многие авторы высказывали предположение о возможности значительного увеличения удельной тяги ЖРД при использовании в качестве горючего металлов. [c.637]

    А ц е т и л а ц ет о н а т бериллия (И) (СН3СОСНСОХ ХСНз)2Ве [56] получен в виде моноклинных кристаллов из водного раствора. Атом бериллия окружен атомами кислорода в несколько искаженной тетраэдрической координации со средним межатомным расстоянием бериллий — кислород 1,70 А [c.35]

    Здесь атом бериллия находится в состоянии sp -гибрндизации, благодаря чему ион ВеГГ построен в форме тетраэдра. Тетраэдрическое расположение атомов бериллия и кислорода характерно и для кристаллического оксида бериллия. В водных растворах ион бериллия, по-видимому, находится также в виде тетраэдрических аквакомплексов Ве(Н20)4р+. [c.611]

    По отношению к бериллию кислород является более сильным донором, чем азот, поэтому большинство реагентов, применяемых в фотометрических или флуориметрических методах определения бериллия, относится к реагентам типа морина, замещенных ок-сиантрахинонов и ауринтрикарбоновой кислоты ( алюминона ) Аналогичным образом внутрикомплексное соединение с ацетилацетоном устойчиво и экстрагируется бензолом, однако в случае купферрона и 8-оксихинолина тенденция к комплексообразова-нию значительно меньше. Тем не менее 8-оксихинальдин образует с Ве растворимый в хлороформе бис-комплекс, который можно использовать для определения Ве в присутствии А1. Для фотометрического определения Ве был предложен ряд реагентов,, имеющих о-оксиазо-группу, в том числе торон и п-нитробензол-азоорцин. Избирательность аналитических методов можно улучшить за счет предварительного осаждения Ве в виде гидроокиси или в виде фосфата при pH 4,4 (используя фосфаты трехвалентного железа и алюминия в качестве коллекторов) .  [c.313]

    Большинство полимеров, образованных металлами с координационным числом 4, содержит в своем составе ноны бериллия, меди, цинка или никеля. Бериллий обладает некоторыми преимуществами, так как он пе подвергается окислению или восстановлению его координационное число неизменно равно 4, и связь бериллий—кислород приближается к истинно ковалентному типу. С другой стороны, серьезным препятствием является токсичность соединений бериллия. Что касается быс-хелатпых группировок, чаще всего используются группировки 1,3-дикетонов, 8-оксихи-нолинов, шиффовых оснований, фосфинатов и анионов а-амино-кислот. Почти во всех случаях бис-клешневидные агенты симметричны, но это лишь вопрос удобства и легкости синтеза. Две хелатные группы могут быть соединены любым способом. Например, в случае р-дикетонов имеются две основные структуры [c.19]

    Сопоставление полученных результатов показывает, что количествеппое содержание кислорода в раз.ттичпых партиях бериллия весьма различно. Однако в одной и той же партии бериллия кислород распределен сравнительно равномерно. [c.342]

    На во духе, как и алюминий, покрывается оксидной пленкой, придающей e у матовый оттенок и обусловливающей пониженную химическую активность. При нагревании бериллий сгорает в кислороде и на воздухе, взаимодействует с серой, азотом. С галогенами реагирует при обычных т1 мпературах или при небольшом нагревании. Все эти реакции сопрог ождаются выделением значительного количества тепла, что опреде ляется большой прочностью кристаллических решеток продуктов взаимодействия ВеО, ВеЗ, ВсзЫз и др. С водородом в обычных условиях Ве не реагирует. [c.471]

    Таким образом, число непарных электронов в атомах бериллия, бора и углерода, находящихся в возбужденном состоянии, соответствует фактической валентности этих элементов. Что же касается атомов азота, кислорода и фтора, то возбуждение их не может привести к увеличению чис.г а неиарных электронов во втором уровне их электронных оболочек. Однако у аналогов этих элементов — фосфора, серы и хлора,— поскольку на третьем уровне их [c.45]

    МехО + Мв2 МегО + Мех является условие АН2<АН 1, где АН 1 и АН2 — энтальпии образования оксидов восстанавливаемого и восстанавливающего металлов, соответственно. В табл. 1.4 приведены энтальпии образования некоторых распространенных металлов в расчете на г.а-том кислорода в них. Из табл. следует, что методом алюминотермии могут быть, например, получены из их оксидов такие металлы как титан, марганец, хром, железо, никель, медь энтальпия образования оксидов которых алгебраически больше, чем энтальпия образования оксида алюминия. Наоборот, метод алюминотермии непригоден для восстановления бериллия и магния. [c.12]

    Алюминий и бериллий обладают очень высоким сродством к кислороду, и их амальгамы энаргичнейшим образо м реагируют с кислородом и парами [c.114]

    Проницаемость пленки молекулами кислорода и воды различна. Такие металлы, как алюминий, титан, бериллий, хром, прочно защищены малопро- ицаем ыми пленкам и, слабее защищены никель, железо, магний. [c.115]

    Образование более богатых кислородом соединений бериллия н магния, чем МО, нехарактерно, но возможно [MgOa, Mg(0)2)2 . [c.263]

    Атомы элементов второго периода имеют следуюшле значения первой энергии ионизации (в эВ) 5,39(и), 9,32(Ве), 8,30(В), 11,26(0, 14,53(Ы), 13,61(0), 17,42(Р), 21,56(Ме). Таким образом, при переходе от и к Не энергия ионизации возрастает, что о ясняется увеличением заряда атомного ядра (при этом число электронных сло в остается одним и тем же). Однако, как видно из приведенных данных, Д возрастает неравномерно у следующих за бериллием и азотом соответственно бора и кислорода наблюдается некоторое уменьшение Л, что объясняется особенностями электронного строения. У бериллия, [c.46]

    Сродство к кислороду у бериллия и его аналогов очень велико, энергии Гиббса образования АС оксидов этих злементов отрицательны, их абсолютное значение более 500 кДж/моль. Магнйй я виде порошка или ленты горит на воздухе ослепительно ярким пламенем. Вследствие большого абсолютного значения ЛС/(MjO) - - 569 кДж/моль, а также доступности магния его ижроко используют для получения многих простых веществ, например [c.332]


Смотреть страницы где упоминается термин Бериллий кислорода: [c.634]    [c.373]    [c.45]    [c.60]    [c.247]    [c.125]    [c.565]    [c.21]    [c.72]    [c.42]    [c.335]    [c.54]    [c.75]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.663 , c.664 ]




ПОИСК







© 2025 chem21.info Реклама на сайте