Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий, восстановление

    Получение металлического бериллия. Из многочисленных методов, предложенных для получения металлического бериллия, серьезную экспериментальную проверку прошли очень немногие, а именно — металлотермическое восстановление соединений бериллия и электролитическое восстановление расплавленных галогенидов бериллия. [c.208]

    Элемент называемый ныне бериллием, был открыт в минерале берилле Во келеном в 1797 г. Получить бериллий в чистом в,иде оказалось весьма трудно, и лишь в 1827 г. удалось получить не вполне чистый бериллий восстановлением его окиси металлическим кальцием. [c.429]


    Важнейшим способом получения металлов ПА-подгруппы, имеющих малые алгебраические величины стандартных электродных потенциалов, является электролиз их расплавленных хлоридов (или других галогенидов) иногда для понижения температур плавления к ним добавляют хлориды щелочных металлов. Например, бериллий получают электролизом расплавленной смеси фторида бериллия и фторида натрия, кальций и стронций — электролизом смесей хлоридов и фторидов этих металлов. Магний помимо электролиза расплавленной смеси хлоридов магния и калия получают другими способами восстановлением доломита СаСОз-М СОз ферросилицием или кремнием, восстановлением оксида магния углем в электрических печах. Барий принято получать металлотермическим (алюминотермическим) способом. [c.294]

Рис. 34. Схема производства бериллия магнийтермическим восстановлением Рис. 34. <a href="/info/63180">Схема производства</a> бериллия магнийтермическим восстановлением
    Известны способы восстановления активности катализаторов крекинга, отравленных железом, при нанесении на них бериллия. Восстановленный бериллием катализатор имеет большой индекс активности, дает меньше кокса и увеличивает выход жидких продуктов реакции отношение СО 2 СО значительно уменьшается. Однако если бериллий нанесен на катализатор раньше железа, он не приостанавливает отравляющего действия железа. [c.22]

    Для элементов левее подгруппы ванадия нет никакого выбора приходится остановиться на восстановлении металлов. Окисел, как исходное вещество, в этом случае уже неприменим, так как окислы щелочных металлов не восстанавливаются, а окислы магния и кальция нельзя выделить из восстановленной смеси. Другие принимаемые во внимание металлы практически все образуют твердые растворы или сплавы, не говоря уже о том, что из-за растворимости кислорода в титане, цирконии и бериллии восстановление их окислов вообще невозможно. Остается только одно исходное вещество — галогенид его можно легко восстановить натрием или магнием. Этот способ представляется удобным общим способом получения металлов. Наряду с этим методом можно получать металлы и электролизом расплавленных солей. Последний является практически единственным методом получения щелочных и щелочноземельных металлов. [c.343]


    Зильбер П. Расследования в области химии бериллия. [Восстановление сульфата бериллия. Сульфидизация бериллия. Новые реакции с хлоридом].— В кн. Бериллий. Химическая технология и металлургия бериллия и его сплавов. Сб. переводов. Ч. 1. М., Изд-во иностр. лит., 1953, с. 54—90. Библ.  [c.93]

    Применяют также магнийтермическое восстановление фторида бериллия  [c.310]

    Бериллий. В чистом виде получают восстановлением металла из его солей (электролитически илн при помощи металлов Ыа, Mg, Са). Легкий (пл. 1,82), сравнительно хрупкий металл серо-стального цвета. [c.411]

    Бериллий, полученный электролизом хлорида или восстановлением фторида, переплавляют в вакууме (20 мм рт. ст.) и в атмосфере аргона. [c.326]

    Изменение изобарно-изотермического потенциала некоторых реакций восстановления окиси бериллия [3, 17] [c.171]

    Фторид бериллия — одно из самых устойчивых соединений бериллия (теплота образования из элементов 241 ккал/моль), вследствие чего не все применяемые на практике восстановители восстанавливают его до металла. В табл. 21 приведено изменение изобарно-изотермического потенциала восстановления фторида бериллия водородом, натрием, кальцием и магнием. Данные таблицы показывают, что ВеРа можно восстановить перечисленными металлами, водород же восстановить фторид бериллия до металла не может. [c.179]

    При магнийтермическом восстановлении фторида бериллия в реакционную смесь вводят 75 % от теоретически необходимой массы магния. Определите массу магния, который надо ввести в реактор для восстановления 5 кг концентрата. Массовая доля ВеРг в концен трате равна 94 %. Ответ 1,8 кг. [c.239]

    Изменение изобарно-изотермического потенциала для некоторых реакций восстановления фторида бериллия [3] [c.179]

    Изменения изобарно-изотермического потенциала некоторых реакций восстановления хлорида бериллия [3[ [c.184]

    Экспериментально характер накопления точечных дефектов с ростом дозы облучения, по-видимому, проще всего проследить по изменению электрического сопротивления материала. Установлено, что после облучения бериллия интегральным потоком нейтронов 4-10 нейтр/см восстановление электрического сопротивления начинается уже при 30°К и достигает 40% первоначального прироста при 50 °К- При температуре отжига 250 °К эффект облучения полностью исчезает [58]. [c.28]

    Многие Э. X. (гл. обр. металлы) первоначально стали известны в виде соед. (преим. оксидов) и получены в свободном виде много лет спустя, что было связано с трудностями хим. восстановления этих металлов из их соединений. В составе животных и растительных организмов обнаружено более 70 Э. X. Подавляющее большинство Э. х. находит то или иное практич. применение. Нек-рые элементы, считавшиеся ранее бесперспективными, теперь играют исключительно важную роль как материалы новой техники (напр., бериллий, титан, цирконий, галлий, германий, ниобий, тантал, рений). [c.473]

    Высокая стоимость бериллия объясняется не только ограниченностью сырьевых ресурсов, но и сложностями технологии получения чистого металла. Основной метод производства бериллия — восстановление его фторида металлическим магнием. Фторид получают из гидроокиси, а гидроокись из бериллового концентрата. Уже первый прогон этой технологической лестницы состоит из нескольких ступеней концентрат подвергают термообработке, измельчению, затем на него последовательно действуют серной кислотой, водой, растворами аммиака и едкого натра, специальныл1и комнлексообразователями. [c.68]

    При нагревании в парах воды окись меди может быть восстановлена частично до меди. И. И, Искольдский и Т. Г. Шо-хор [62] восстананавливали окись меди железным порошком, а также бериллием. Восстановление железом шло по реакций ЗСиО + 2Ре == РегОз, + ЗСи /и сопровождалось выделением [c.76]

    Извлечешю бериллия, восстановление и приготовлепие сплавов. Изучение итогов десятилетних исследований. [Изучение проф. заболеваемости, сиязанной с производством Ве]. [c.111]

    МехО + Мв2 МегО + Мех является условие АН2<АН 1, где АН 1 и АН2 — энтальпии образования оксидов восстанавливаемого и восстанавливающего металлов, соответственно. В табл. 1.4 приведены энтальпии образования некоторых распространенных металлов в расчете на г.а-том кислорода в них. Из табл. следует, что методом алюминотермии могут быть, например, получены из их оксидов такие металлы как титан, марганец, хром, железо, никель, медь энтальпия образования оксидов которых алгебраически больше, чем энтальпия образования оксида алюминия. Наоборот, метод алюминотермии непригоден для восстановления бериллия и магния. [c.12]

    Ве, Mg и элементы подгруппы кальция можно получать электролизом их расплавленных солей. Для получения бериллия используют главным образом смесь Be lj с Na l (для снижения температуры плавления), а также может быть применено магнийтерми-ческое восстановление BeF.  [c.260]

    Пироэлектрометаллургия развилась сравнительно не очень давно Химические реакции восстановления осуществляются самым сильным вое становителем — электрическим током на катоде при очень высоких темпе ратурах. В таком техническом электролизе электролитами являются рас плавленные соли и гидраты окислов или растворы металлических окислов в расплавленных солях. Из расплавленных солей и гидроокисей получают щелочные, щелочноземельные и редкоземельные металлы. Из растворов окисей в расплавленных фторидах металлов получают бериллий, магний и алюминий. [c.229]


    Более загрязненный бериллий получают термическим восстановлением Вер2 (иногда с добавками фторида бария) сублимированным магнием в индукционных печах с графитовыми тиглями. [c.326]

    Получение и свойства. Строение кристаллических решеток. Получают эти металлы обычно электролизом расплавленных хлоридов, магний — также восстановлением оксида MgO углем в электрических печах и другими способами. Барий чаще всего получают алюминотермическим способом. Бериллий, магний и при высокой температуре кальций образуют кристаллы с гексагональной плотной упаковкой, а стронций и при низкой температуре кальций имеют кубическую гранецентрированную решетку. Для бария характерна объемноцентриро-ванная упаковка. Это различие решеток играет некоторую роль в нарушении закономерности различий плотности, температур плавления и других физических свойств. Атомы их, кроме бериллия, теряют два электрона, превращаясь в ионыЭ . Но их восстановительная способность слабее, чем у щелочных металлов. [c.275]

    Применительно к разбавленным сернокислым рудным растворам предложена экстракция длинноцепочечными аминами [72]. Наиболее эффективно оказалось применение гептилдециламина с разбавителем I4. И в этом случае предложено предварительное восстановление Fe (III) в Fe (II) для предотвращения его экстракции. Из аминного экстракта реэкстракцию проводят кислыми хлоридными или щелочными растворами, в которых затем отделяют бериллий от алюминия. Извлекается до 95% бериллия из исходного раствора. [c.199]

    В разделе, посвященном химии бериллия, с привлечением термодинамических данных был обсужден вопрос о применимости тех или иных восстановителей для получения металлического бериллия из его соединений. Было показано, что для восстановления окиси бериллия из обычно применяемых металлов пригоден лишь Са. Но продукт восстановления загрязняется кальцием вследствие образования соединения aBeig. Неудачна и попытка использовать для восстановления Ti и Zr. В данном случае реакция проходит в твердой фазе (температуры плавления компонентов очень высоки), поэтому выход во многом зависит от степени контактирования ВеО с восстановителем, в связи с чем брикетирование производилось под давлением 1000 атм. Этот процесс, проводившийся в глубоком вакууме (10 мм рт.ст.) и при 1785°, оказался слишком дорогим, чтобы получить широкое применение. [c.208]

    Для восстановления фторида и хлорида бериллия применимы все обычные металлы-восстановители, что подтверждается термодинамическими характеристиками соответствующих реакций. Из упомя- [c.208]

    Металлотермическое восстановление Be la пока не используется промышленностью, но некоторые его варианты могут оказаться весьма перспективными, особенно при организации крупномасштабного непрерывного процесса. В первую очередь это относится к способу восстановления Be la парами натрия. Разработка процесса связана с преодолением трудностей конструктивного характера, в первую очередь с выбором подходящего коррозионностойкого материала. В настоящее время в крупном лабораторном масштабе этим методом получен порошок с содержанием металла 99,0—99,6%, что соответствует требованиям к техническому металлу. Механическая прочность нат-рийтермического бериллия ниже, чем промышленного, пластичность (в интервале 200—600°) выше [81]. [c.209]

    Технологическая схема производства бериллия магнийтермичес-ким восстановлением фторида изображена на рис. 34. Процесс идет при 1000° в высокочастотной электрической печи с графитовым тиглем (рис. 35). В тигель периодически загружают шихту. По окончании [c.209]

    Производство медно-бериллневых лигатур. Основной метод — восстановление бериллия из его окиси углеродом в присутствии расплавленной меди. В основе процесса лежат следующие реакции, протекающие при 2000°  [c.218]

    Такие металлы можно выделить в свободном виде также и методом металлотермии — восстановлением ме таллов из их оксидов более активными металлами, обладающими большим сродством к кислороду. Для этой цели особенно часто используют алюминий, теплота образования оксида которого очень-велика (4А1 ЗОг = = 2А12О3-Ь 1676 кДж/моль). Лишь бериллий, магни и кальций превосходят алюминий в этом отношении. [c.396]

    В концентрированных азотной и серной кислотах (без нагревания) бериллий пассивируется, остальные металлы реагируют с этими кислотами. Основными продуктами восстановления концентрированных кислот являются H2S (для H2SO4) и N2O (для HNO3). [c.236]

    Важнейшие новые твердые катализаторы, ведущие к образованию стереорегулярных полимеров, можно классифицировать на четыре группы предварительно формованные окислы металллов перемеппой валентности на носителях с большой удельной поверхностью промотированные окиснометаллические катализаторы твердые катализаторы, приготовленные осаждением непосредственно в реакционной зоне из солей металлов переменной валентности и ме-таллорганических соединений предварительно обработанные осажденные катализаторы. Предварительно приготовляемые окиснометаллические катализаторы включают никель на угле [79], окись молибдена на окиси алюминия [79], молибдат кобальта на окиси алюминия [108] и окись хрома на алюмосиликате И8]. Активность этих катализаторов можно изменять в широких пределах введением различных промоторов, в частности, металлов I, II и III групп периодической таблицы, их гидридов и металлорганических производных [35]. Из осажденных важнейшими являются катализаторы, приготовляемые взаимодействием четыреххлористого титана с алкильными производными алюминия, бериллия, магния илп цинка [107]. Предварительно обработанные осажденные катализаторы включают соли металлов переменной валентности, восстановленные до низшей валентности, например, треххлористый титан, в сочетании с металлорганическими соединениями. [c.285]

    Остаточное электросопротивление бериллия при температурах О—30 °К практически постоянно, равно 0,3— 0,4 мком см и определяется в основном суммарным содержанием растворенных в металле примесей и наличием дефектов структуры [26]. Указывается, что прирост электросопротивления бериллия после облучения обусловлен главным образом накоплением в решетке металла атомов гелия. При этом изменение удельного электросопротивления составляет 10—12 мком-см на 1% ядер гелия. Восстановление электросопротивления облученного дозами 3-10 ° и 6-102° нейтр/см2 бериллия происходит после изохрональных отжигов в течение 1 час при температурах 800 и 1000 °С [25]. [c.12]

    Бензол и бензиловый спирт дают дифенилметан при действии фтористого бора фтористого водорода или хлористого бериллия . Дифенилметан был получен также из бензола, хлористого метилена и хлористого алюминия 1 и из бензола, формальдегида, этилового спирта и концентрированной серной кислоты и. Восстановление бензофенола до дифенилметана было осуществлено действием иодистоводородной кислотой и фосфором 12, натрия и спирта и сплавлением с хлористым цинком и хлористым натрием . Конденсацию хлористого бензилмагния с бензолом с образованием дифенилметана можно осуществить добавлением небольших количеств магния и воды [c.235]

    Трифенилметан может быть получен взаимодействием бензола и хлороформа в присутствии хлористого алюминия или хлорного железа восстановлением трифенилхлорметана эфиром под влиянием хлористого алюминия , хлорного железа или хлористого цинка восстановлением трифенилхлорметана или трифе-нилкарбииола действием спирта в присутствии серной кислоты нагреванием трифенилкарбинола с муравьиной кислотой из бензола и бензальхлорида в присутствии хлористого бериллия - [c.424]


Смотреть страницы где упоминается термин Бериллий, восстановление: [c.471]    [c.436]    [c.565]    [c.239]    [c.126]    [c.199]    [c.209]    [c.209]    [c.210]    [c.316]    [c.512]    [c.105]   
Аналитическая химия висмута (1953) -- [ c.111 , c.282 ]




ПОИСК







© 2025 chem21.info Реклама на сайте