Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы водой

    В табл. 55 дана сравнительная характеристика жидких металлов, воды, дифенильной смеси и расплава солей. Весьма эффективным теплоносителем с точки зрения значений коэффициента теплоотдачи, температуры плавления и кипения, удельной теплоемкости, а также стоимости перекачки является натрий. Недостатком натрия является высокая активность по отношению к кислороду. Он является очень опасным горючим и взрывчатым веществом. [c.329]


    Защитные свойства характеризуют способность нефтепродукта защищать металл от коррозии в присутствии электролита [54]. Конкретно для топлив это означает степень уменьшения скорости электрохимической коррозии в системе топливо-металл-вода. Поэтому для надежной эксплуатации техники, средств хранения и перекачки горючего очень важно, чтобы топлива не только сами не были агрессивными, но и обладали достаточными защитными свойствами. [c.49]

    Металл Вода Электролит [c.90]

    Исследование растворимости закисных хлоридов этих металлов [505, 5061 показало хорошую растворимость соединения кобальта в высших спиртах, худшую—в кетонах, органических кислотах и альдегидах. В системе хлориды металлов—вода—каприловая кислота растворимость хлоридов, однако, очень мала. Добавление электро- [c.456]

    Благодаря своей эластичности хлористое серебро хорошо держится на стекле и на металлах, Вода постепенно отклеивает эту замазку, но для неполярных жидкостей замазка из хлористого серебра вполне пригодна. [c.1050]

    Третьим способом получения метана и других парафинов из неорганических соединений является разложение некоторых карбидов металлов водой или кислотами. Так, при обработке кислотами железа, содержащего карбид железа, выделяются предельные углеводороды. Особенно гладко, по Муассану, протекает образование метана из карбида алюминия и воды в результате реакции получается довольно чистый метан  [c.31]

    Особенность атмосферной коррозии металлов - малая толщина слоя электролита на поверхности металла (вода -ь сопи + продукты коррозии). В связи с этим кислород воздуха достаточно легко проникает к поверхности корродирующего металла. Отсюда следует, что с уменьшением толщины слоя электролита катодный процесс атмосферной коррозии металла облегчается, а анодный процесс затрудняется. Таким образом, малая толщина слоя электролита приводит к большому омическому сопротивлению при работе коррозионных микропар. Следовательно, для атмосферной коррозии контролирующим фактором является катодно-анодно-омический контроль. [c.41]

    Природные ПАВ (сера-, азот-, кислородсодержащие соединения) в топливах выполняют защитную функцию, вытесняя с поверхности металлов воду и создавая адсорбционную антикоррозионную пленку. При гидроочистке удаляются как коррозионно агрессивные меркаптаны и низкомолекулярные кислоты, так и природные ПАВ, поэтому металлы не подвергаются хи- [c.91]


    Водородные соединения элементов подгруппы азота общей формулы ЭНз представляют собой бесцветные газообразные вещества с характерными резкими запахами. Непосредственным синтезом из элементов получить гидриды азота и его аналогов довольно трудно, их обычно получают путем разложения соответствующих нитридов, фосфидов или арсенидов металлов водой [c.80]

    Типичная реакция окисления металла водой сопровождается образованием гидроксида и выделением водорода  [c.331]

    Взаимодействие с растворами щелочей. Щелочами металлы окисляться не могут, так как щелочные металлы являются одними из наиболее сильных восстановителей. Поэтому их ионы — одни из наиболее слабых окислите.пей и в водных растворах практических свойств окислителя не проявляют. Однако в присутствии щелочей окисляющее действие воды может проявиться в большей мере, чем в их отсутствие. При окислении металлов водой образуются гидроксиды и водород. Если оксид и гидроксид относятся к амфотерным соединениям, то они будут растворяться в щелочном растворе. В результате пассивные в чистой воде металлы могут энергично взаимодействовать с растворами щелочей  [c.333]

    Процесс растворения может быть представлен в виде двух стадий окисления металла водой и растворения гидроксида  [c.333]

    Адсорбция органического вещества на незаряженной поверхности электрода помимо эффекта выжимания определяется также энергетическими эффектами, связанными с вытеснением адсорбированных молекул растворителя (воды) молекулами органического вещества. При этом происходит разрыв связей металл — вода и образование связей металл — органическая молекула. Если энергии, которые характеризуют эти связи, обозначить соответственно АСм-п и ДСм-л, то при достаточно малых Дст на границе водный раствор/воздух [c.41]

    СнзО=4,184 Дж/К-г — удельная теплоемкость воды. Количество теплоты, отданное металлом воде внутреннего стакана, равно [c.116]

    Количество теплоты, отданное металлом воде, равно [c.118]

Рис. 87. Схема процесса, протекающего на границе раздела металл— вода Рис. 87. <a href="/info/24358">Схема процесса</a>, протекающего на <a href="/info/68165">границе раздела</a> металл— вода
    Ниже рассмотрена особая группа гетерогенных процессов — электрохимические реакции, протекающие на границе раздела фаз, в частности металл — вода (или раствор соли металла). Эти реакции характеризуются переносом заряда и вещества через границу раздела фаз твердое вещество — жидкость. [c.257]

    Как видно из приведенного выше примера, при контакте металла с раствором его соли эти две соприкасающиеся фазы приобретают противоположные заряды, в результате на поверхности раздела фаз образуется двойной электрический слой и между металлом и раствором возникает разность электрических потенциалов. Образование двойного электрического слоя и возникновение разности потенциалов на границе металл — вода (раствор) происходит в соответствии с теми же закономерностями, которые обсуждались в 17 при изучении коллоидного состояния вещества. [c.258]

    Нужно оговориться, что скачок потенциала на границе металл — вода в нулевом растворе, т. е. в отсутствие ионного двойного слоя, благодаря адсорбции растворенных молекул и ориентации молекул воды не будет точно равен разности потенциалов на границе металл — вакуум. Это влияние аналогично влиянию адсорбционных слоев на работу выхода электронов в вакууме, широко используемому в электронной технике. [c.384]

    Все карбонаты растворяются в сильных кислотах с образованием соли соответствующего металла, воды и двуокиси углерода  [c.92]

    ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ НАПРАВЛЕННОСТИ ПРОЦЕССОВ В СИСТЕМАХ МЕТАЛЛ - ВОДА И ОКСИД - ВОДА [c.85]

    Ранее был рассмотрен вопрос об условиях возникновения двойного электрического слоя на границе металл — вода или металл — раствор соли, содержащей ионы, одноименные с металлом ( 155). После установления равновесия в такой системе можно всегда констатировать наличие скачка потенциала между заряженной поверхностью металла и жидкостью. Этот скачок потенциала обозначим буквой ф. Его называют термодинамическим потенциалом. [c.322]

    Электролитические проводники делят на две группы а) вещества, обладающие электролитической про водимостью в чистом состоянии (расплавленные соли, твердые галогениды некоторых металлов, вода, спирты и многие подобные органические растворители), и б) растворы одного или нескольких веществ в воде и других полярных растворителях. [c.14]


    В нейтральных водных средах корродируют щелочные и щелочно-земельные металлы, магний, алюминий, цинк, железо, марганец, хром и даже титан. Поэтому такие металлы характеризуют как металлы с повышенной термодинамической нестабильностью. При понижении значений pH (в кислых средах) коррозии подвергаются кобальт, никель, свинец, молибден, вольфрам. Особенно активно разрушает металлы вода, содержащая растворенный в ней кислород, так как потенциал такой окислительной системы (О2 + Н2О) может достигать +0,815 В. [c.258]

    При погружении металла в воду происходит отрыв ионов от кристаллической решетки металла под влиянием полярных молекул растворителя (стр. 28). В результате перехода катионов в раствор металл приобретает некоторый отрицательный заряд за счет оставшихся на нем электронов, тогда как прилежащий к нему слой воды заряжается положительно за счет катионов, удерживаемых отрицательным зарядом металла (рис. 17). На границе раздела металл — вода образуется двойной электрический слой. [c.59]

    Закончите рис. 3.5, указав знаками зарядов плюс ( + ) и минус (—) соответствующие заряды на границе металл — вода (раствор). Ионы, находящиеся в растворе, считайте для простоты не гидратированными. [c.102]

    В этом отношении натрий ближе к литию, чем к остальным щелочным. металлам. Водой все ацетилиды разлагаются с выделением ацетилена и образованием гидроксида. [c.117]

    Диаграммы Пурбе (диаграммы состояния системы металл—вода) могут быть использованы для установления границ термодинамической возможности протекания электрохимической коррозии металлов и решения некоторых других вопросов. Зти диаграммы представляют собой графики зависимости обратимых электродных потенциалов (в вольтах по водородной шкале) от pH раствора для соответствующих равновесий с участием электронов (горизонтальные линии) и электронов и ионов Н или ОН (наклонные линии) на этих же диаграммах показаны (вертикальными линиями) равновесия с участием ионов Н" или ОН , но без участия эл ктронов (значения pH гидратообразоваиия). На рис. 151 приведена диаграмма Пурбе для системы алюминий—вода, соответствующая уравнениям табл. 32. [c.218]

    Легковоспламеняющиеся твердые и самовозгорающиеся реактивы хранят в сухих помещениях в отдельных отсеках. Указанные реактивы даже временно нельзя оставлять на хранение вместе с другими реактивами. При малейщем нарущении герметичности тары и утечке жидкости, предохраняющей реактив от самовозгорания (минеральное масло для щелочных металлов, вода — для фосфора и т. д.), ее необходимо немедленно вынести в безопасное место и принять меры для устранения повреждения. [c.37]

    Описан процесс получения сульфонатной присадки путем непрерывного сульфирования дистиллятного масла газообразным серным ангидридом в реакторе типа Ротатор с рециркуляцией кислого масла. Серный ангидрид затем нейтрализуют раствором аммиака, сульфонат аммония экстрагируют изопропиловым спиртом. Обменной реакцией сульфоната аммония с гидроксидом кальция получают сульфонат кальция, из которого в результате карбонатации углекислым газом в растворе ксилола и метилового спирта образуется высокощелочная сульфонатная присадка. Для упрощения процесса перед сульфированием вводят 1—3 % (масс.) низкомолекулярных ароматических углеводородов (толуол, ксилол и др.), что снижает окисляющее действие серного ангидрида, повышает степень сульфирования и позволяет отделить кислый гидрон от вязкого масла без добавления каких-либо растворителей [а. с. СССР 405933]. Чтобы ускорить очистку присадки и повысить ее эффективность перед обработкой углекислым газом в реакционную смесь, состоящую из сульфоната щелочноземельного металла или аммония, минерального масла, гидроксида щелочноземельного металла, воды, углеводородного растворителя и промотора (уксусная кислота), вводят 0,01—0,1 % (масс.) поли-силоксана [а. с. СССР 468951]. [c.79]

    Поверхностные воды — речные, озерные, морские — содержат сверх примесей, имеющихся в атмосферной воде, разнообразные вещества. Почти всегда содержатся гидрокарбонаты кальция, магния, натрия и калия, а также сульфаты и хлориды от ничтожных количеств до полного насыщения, В морской воде представлена почти вся таблица элементов, включая драгоценные и радиоактивные металлы. Вода, содержащая менее I г солен иа I кг воды, называется пресной, более 1 г — соленой. По содержанию ионов Са + и даюншх осадки (накипи) в паровых котлах, реакционных аппаратах и теплообменниках, [c.24]

    Диаграммы указывают условия образования на поверхности электрода диффузионно-барьерных пленок, но не содержат данных об их защитных свойствах в присутствии специфических анионов, таких как ЗО или СГ. Они не содержат также сведений о возможности образования пленок нестехиометрического состава (некоторые из этих пленок существенно влияют на скорость коррозии — см. гл. 5, однако отчетливо показывают природу стехиоме-трических соединений, в которые при достижении равновесия могут превратиться любые менее устойчивые соединения. Учитывая вышеупомянутые ограничения, диаграммы весьма полезны для описания равновесных состояний системы металл—вода в кислых и щелочных средах как при наложении внешней поляризации, так и без нее. Диаграммы Пурбе для железа приведены и обсуждаются в приложении 3. [c.39]

    Ингибировать протекание коррозии. Пигменты, содержащиеся в слое грунтовки (слое, непосредственно прилегающем к поверхности металла), должны быть эффективными ингибиторами коррозии. Достигая поверхности металла, вода растворяет определенное количество пигмента и становится менее коррозлон-ноактивной. Пигменты, обладающие свойствами ингибиторов коррозии, должны быть достаточно растворимы, чтобы создать ту минимальную концентрацию ингибирующих ионов, которая необходима для уменьшения скорости коррозии. Однако растворимость не должна быть настолько велика, чтобы приводить к быстрому вымыванию их из покрытия. [c.250]

    М. А. Ахметшин и К. Р. Леонова, изучая смачиваемость металла водой в среде керосиновых растворов стеарокса-6, ОП-4, дисолвана-4411, катионата 2-Б, препарата ОС-20, сульфонола НП-1, диспергатора НФ, четвертичных аммониевых солей стеариновой кислоты, катапина К, катапина А и диамин-диолеата, показали, что "поверхность металла может быть превращена из гидрофобной в гидрофильную под действием наиболее активных гидрофилиза-торов стеарокса-6 и ОП-4". [c.102]

    При сохранении тонкого водяного слоя анионного ПАВ при перекачке мангышлакской нефти по трубопроводам всегда существуют условия для возникновения местной коррозии стенок трубы. Для снижения опасности местной коррозии и снижения общей скорости коррозии в сульфонольных растворах были испытаны различного рода неорганические и органические добавки. В этой связи добавка силиката, приводящая к улучшению смачиваемости металла водой в двухфазной среде раствор сульфонола — мангышлакская нефть как ингибитора коррозии, представляла особый интерес. [c.104]

    Таким образом, в системе металл — вода на границе раздела фаз возникает двойной электрический слой, блокирующий поверхность металла. Образовавшаяся пограничная разность потенциалов получила название электродного потенциала (лат. ро1еп11а — возможность, мощь). [c.225]

    Общая закономерность в процессах с.мачивания проявляется в том, что чем выше полярность жидкости, тем слабее ее смачи Бающие свойства высоконолярная ртуть смачивает голько некого рые металлы, вода смачивает поверхности многих полярных веществ, органические жидкости (спирты, бензол, гексан) смачивают практически любую поверхность. [c.313]

    Обычно вода смачивает металлическую поверхность. Например, капля воды, помещенная на алюминиевую пластинку, образует краевой угол около 60°. Но если ту же пластинку предварительно погрузить на несколько минут в раствор стеариновой кислоты в бензоле, то краевой угол капли воды на ней превысит 90°. То, что алюминий перестал смачиваться водой, объясняется следующими причинами. Стеариновая кислота — типичное поверхностно-активное вещество она состоит из полярной карбоксильной группы СООН и неполярного углеводородного радикала Сх Нзд. По общему правилу уравнивания полярностей полярное стремится к полярному, а неполярное—к неполярному. Поверхность металла, покрытого оксидной пленкой, обладает ярко выраженной полярностью, поэтому молекулы стеариновой кислоты своими полярными группами прочно присоединяются к поверхности металла. При этом они ориентируются так, что их yглeвo opoдныe радикалы ( хвосты ), имеющие очень малое сродство к воде, направлены вверх, перпендикулярно поверхности металла. Вода ведет себя по отношению к обработанной стеариновой кислотой поверхности алюминия так же, как по отношению к поверхности чистого парафина, ведь наружу торчат только углеводородные хвосты. [c.225]

    Электродвижущие силы. Теория гальванического элемента. Еще в ХУИ1 в. было замечено, что на границе раздела металл — вода (или раствор электролита) возникает разность электрических потенциалов. [c.44]

    Пассивирование алюминия. В пробирку с 2—3 мл концентрированной азотной кислоты опустить стружку алюминия на 3—4 мин. Наблюдаются ли какие-либо изменения Слить fa TBOp с металла и осторожно, без встряхивания ( ), промыть металл водой. [c.225]


Смотреть страницы где упоминается термин Металлы водой: [c.225]    [c.46]    [c.343]    [c.156]    [c.158]    [c.45]    [c.275]    [c.284]    [c.299]   
Практикум по общей химии (1948) -- [ c.162 ]

Практикум по общей химии Издание 2 1954 (1954) -- [ c.167 ]

Практикум по общей химии Издание 3 (1957) -- [ c.171 ]

Практикум по общей химии Издание 4 (1960) -- [ c.171 ]

Практикум по общей химии Издание 5 (1964) -- [ c.185 ]




ПОИСК







© 2025 chem21.info Реклама на сайте