Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптические УФ и видимой области

    Полиметилметакрилат при нагревании выше 125°С хорошо поддается формованию и вытяжке, а при 190—280 °С— экструзии и литью под давлением. Изделия из него сохраняют свою форму при нагревании до 60—80 С, при более высокой температуре изделия начинают деформироваться. При 300 °С и выше он деполимеризуется с выделением ММА. Полиметилметакрилат обладает хорошими оптическими свойствами, сохраняющимися и при большой толщине стекла. Он пропускает до 92% лучей видимой области спектра и 75% УФ-лучей. [c.45]


    Для количественного определения свободной серы предложены различные оптические методы. Наиболее надежным из них является фотометрический метод [135]. Авторы использовали реакцию взаимодействия свободной серы с цианидами щелочных металлов. После прибавления хлорного железа к раствору образовавшегося роданистого калия измеряли интенсивность поглощения в видимой области (при 465 мкм). Содержание серы определяли по калибровочному графику оптическая плотность (или пропускаемость) — концентрация. Этим методом удается определить содержание в-образцах серы от 2-10- % и выше, причем даже в присутствии значительных количеств перекисей, органических сульфидов, дисульфидов и меркаптанов. [c.155]

    При записи спектров поглощения обычно используют две кюветы кювету сравнения, заполненную растворителем, и кювету образца, заполненную исследуемым раствором в данном растворителе. Применение двух кювет позволяет компенсировать поглощение растворителя и материала кювет, а также потери излучения при отражении его на границах различных оптических сред. В абсорбционной спектрофотометрии применяются кюветы разных размеров длина оптического пути в кювете изменяется от долей миллиметра до нескольких сантиметров, объем — от долей миллилитра до нескольких десятков миллилитров. Для работы в УФ-области кюветы изготовляются из кварца, в видимой области можно пользоваться стеклянными кюветами. [c.17]

    Спектры жидких образцов. Спектры жидкостей и растворов приходится снимать наиболее часто. Для качественного определения вещества достаточно поместить каплю исследуемого соединения между отполированными поверхностями пластинок из подходящего материала (табл. 19). Оптические свойства поверхности таких пластинок в видимой области (помутнение, мелкие царапины и т. п.) не играют большой роли, так как рассеяние света такими дефектами резко уменьшается с увеличением длины волны, и мутная пластинка может быть прозрачной для ИК-излучения. Образовавшийся между пластинками капиллярный слой жидкого веще- [c.205]

    Результаты, приведенные в таблице, свидетельствуют о влиянии на эстетические свойства красителей отдельных областей спектра. Неожиданным является обнаружение связи поглощения излучения в ближней УФ -области спектра и эстетического восприятия. Эта тенденция усиливается, начиная с некоторой пороговой длины волны А. = 357 нм. Такое влияние на эстетические свойства свидетельствует, вероятно, о каком-либо ином незрительном механизме воздействия этой области на человека. В видимой области также имеются соответствующие корреляции. Данные закономерности свидетельствуют о связи эстетических свойств с оптическими характеристиками спектра Обнаруженный эффект может быть использован на практике для характ еристики качества синтезированных образцов красителей [c.82]


    СПЕКТРОСКОПИЯ ОПТИЧЕСКОГО ПОГЛОЩЕНИЯ В УЛЬТРАФИОЛЕТОВОЙ И ВИДИМОЙ ОБЛАСТЯХ [c.11]

    Таким образом, спектроскопия оптического поглощения в ультрафиолетовой и видимой областях является удобным методом количественного определения фуллеренов в растворах. [c.12]

    Разработана модифицированная методика количественного анализа фуллеренов С60 и С70 в растворах ССЦ в УФ/видимой области спектра с использованием фотоэлектроколориметра КФК-2. Приведены градуировочные зависимости оптической плотности растворов от их концентрации, при этом получены [c.30]

    Из различных видов фотоэлектрических детекторов излучения, основанных на внутреннем и внешнем фотоэффекте (фотоэлементы, фотосопротивления, фотоумножители, счетчики фотонов, электронно-оптические преобразователи и усилители, фотодиоды), для измерений в УФ- и видимой областях спектра наибольшее распространение получили фотоэлектронные умножители (ФЭУ) и фотодиоды. [c.79]

    Назначение и принцип действия. Регистрирующие двухлучевые спектрофотометры СФ-10, СФ-14, СФ-18 предназначены для измерения пропускания (оптической плотности) прозрачных и мутных сред и коэффициентов диффузного отражения твердых и порошкообразных веществ в видимой области спектра. Спектрофотометры состоят из осветителя, двойного призменного монохроматора, фотометра поляризационного типа, приемно-усилительной части и записывающего механизма. [c.214]

    Одним из наиболее эффективных методов исследования можно считать оптическую спектроскопию. При прохождении света (УФ, видимого или ИК, т. е. электромагнитных волн с определенной энергией) через раствор органического вещества происходит его частичное или полное поглощение (это зависит от энергии светового пучка и от строения органического вещества). Другими словами, оптическая спектроскопия исследует зависимость интенсивности поглощения света от длины волны (энергии). Поглощенная молекулой энергия может вызвать или переход электрона с одного энергетического уровня на другой, энергия которого выше (УФ-спектро-скопия), или привести к колебанию и вращению атомов (ИК-спек-троскопия). Поскольку спектры поглощения в УФ и видимой областях связаны с электронными переходами, то эти спектры называются также электронными спектрами. В общем спектре электромагнитных волн они находятся в интервале от 200 до 1000 нм.  [c.33]

    Скорость реакций, сопровождающихся изменением оптической плотности раствора в УФ- или видимой области спектра, удобно регистрировать с помощью высокоточного и чувствительного спектрофотометрического метода. [c.265]

    Методы, основанные на взаимодействии излучения с веществом. Большое значение имеют различные оптические методы анализа. Измерение поглощения света является основой фотометрии. Различают две группы фотометрических методов колориметрию и спектрофотометрию. В колориметрии сравнивают окраску исследуемого раствора с окраской стандартного раствора. В спектрофотометрии определяют спектр поглощения вещества (раствора) или измеряют светопоглощение при строго определенной длине волны. Как чисто физический метод, фотометрия применяется для анализа растворов красителей, для определения окрашенных окислов азота в газах и т. п. Измерение поглощения в ультрафиолетовой и в инфракрасной частях спектра позволило распространить эти методы на многие бесцветные растворы, не поглощающие света в видимой области. Таким путем анализируют сложные системы, содержащие органические вещества, например различные фракции перегонки нефти, витамины и др. физиологически активные вещества. Измерение поглощения в инфракрасной области используется, кроме того, для определения мути в растворах, пыли в газах. [c.18]

    КФО - колориметр фотоэлектрический однолучевой - предназначен для измерения коэффициентов пропускания прозрачных сред в видимой области спектра. Оптическая схема прибора и его внешний вид приведены на рис. 15.4, 15.5, характеристика светофильтров - на рис. 15.6. [c.137]

    В спектроскопии ЭПР имеется также круг объектов, которые представляют собой простейшие парамагнитные центры — электроны или дырки в твердых телах или растворах. Это могут быть, например, захваченные электроны в кристаллах, в частности различных галогенидов щелочных металлов, называемые f-центрами. При нагревании кристалла, например LiF, в присутствии паров металла и последующего быстрого охлаждения образуется вакансия аниона, занимаемая электроном, т, е. f-центр. Система имеет характерную окраску, обусловленную f-полосой поглощения в видимой области оптического спектра, а в спектре ЭПР появляется широкая полоса i -центров в области чисто спинового значения -фактора. Ширина сигнала связана с перекрыванием линий сверхтонкой структуры, обусловленных взаимодействием с ядром окружающих катионов и в меньшей степени с ядрами анионов. Плотность захваченного электрона в основном локализуется на вакансии и мало размывается на окружение, хотя между вакансией и шестью окружающими ее катионами решетки идет конкуренция за электрон. Так, при увеличении размеров катиона и постоянном анионе (вакансии) s-характер электронной плотности на шести ближайших катионах возрастает, а при одном и том же катионе и увеличении размеров аниона (от F к С1 ) 5-характер электронной плотности на катионах убывает. Существуют и некоторые другие электронно-избыточные центры и предложены различные теоретические модели их описания. [c.76]


    Аналогично тому как РЭС связана с рентгеновскими спектрами поглощения и рентгеновской флуоресценцией, метод ФЭС связан с электронными УФ спектрами поглощения и релаксационными процессами фотолюминесценции (флуоресценции и фосфоресценции) в УФ и видимой областях спектра (см. учебник Физические методы исследования в химии. Структурные методы и оптическая спектроскопия ). [c.140]

    Молекулярная оптическая спектроскопия — это раздел физики и физической химии, в котором изучаются молекулярные спектры поглощения, испускания и отражения электромагнитных волн в диапазоне волновых чисел от 10 до 10 см . Она включает инфракрасную спектроскопию, спектроскопию в видимой области и УФ-спектроскопию. [c.242]

    Прн исследовании оптических свойств установлено, что в видимой области в зависимости от содержания кислорода цвет меняется от коричнево-черного до красного, оранжевого и желтого (рнс. 40). [c.101]

    Неотъемлемой частью любого спектрофотометра является монохроматор— устройство, позволяющее получать излучение определенной длины волны (монохроматическое излучение). В качестве источника излучения применяется специальная лампа, дающая свет, содержащий набор квантов со всевозможными частотами в некотором диапазоне, белый свет. В зависимости от выбранного диапазона используют либо водородные лампы, дающие ультрафиолетовое излучение, либо лампы накаливания, излучающие в видимой области. Пучок света фокусируют с помощью специальной оптической системы и далее пропускают его через призму или дифракционную ре- 1д шетку, после чего направляют на узкую щель, которая в зависимости от угла поворота призмы или решетки вырезает из- 5-лучение определенной длины волны. [c.173]

    При работе в видимой области спектра применяют кювету из оптического стекла, в ультрафиолетовой области — кварцевую или стеклянную кювету, снабженную кварцевыми окошками. Стенки кюветы покрывают черным лаком, оставляя окошки диаметром 1 см по пути светового потока. Бюретку и мешалку укрепляют таким образом, чтобы их концы находились против затемненных участков кюветы. [c.437]

    На рис. 2.2 представлена принципиальная оптическая схема спектрального прибора. В зависимости от материала, из которого изготовлены оптические детали, такой прибор будет работать в. той области спектра, где эти материалы прозрачны. Например, стекло прозрачно в видимой области спектра, кварц — в видимой и ультрафиолетовой областях. [c.19]

    Для работы в видимой области спектра имеется много различных материалов, обладающих хорошей прозрачностью и большой дисперсией. Наиболее удобным оказывается стекло. Изменяя его состав, получают оптические стекла с нужными свойствами. Различные сорта стекла сильно поглощают свет в области длин волн короче 3600— 4000 А. Они имеют большую дисперсию, особенно для фиолетового и [c.86]

    Иногда из-за ограниченной прозрачности или дисперсии материала не удается охватить всю нужную область спектра. Тогда делают приборы со сменной оптикой. Так инфракрасные спектрофотометры снабжаются набором сменных призм и других оптических деталей, что дает возможность с помощью одного прибора работать по всей ближней инфракрасной области. В приборах с кварцевой оптикой часто имеется сменная стеклянная призма для увеличения дисперсии при работе в видимой области. [c.99]

    Универсальный монохроматор УМ-2. Для работы в видимой области спектра выпускается промышленная модель универсального монохроматора со стеклянной оптикой УМ-2 (рис. 98). Этот прибор может быть использован как для работы с абсорбционным, так и с эмиссионными спектрами. Оптическая схема монохроматора включает входной и выходной коллиматоры, оптические оси которых расположены под углом 90 °. Оба объектива можно перемещать вдоль оптической оси для фокусировки коллиматоров. [c.147]

    Оптическую плотность и коэффициент погашения определяют обычно для максимума абсорбционной полосы. Коэффициент погашения зависит, конечно, от длины волны для участков спектра, где вещество не поглощает, коэффициент равен нулю чем сильнее поглощение, тем больше значение е. Для сильных колебательных полос в ближней инфракрасной области величина молярного коэффициента погашения достигает 1500. Электронные полосы для переходов, разрешенных правилом отбора, в ультрафиолетовой и видимой областях еще более интенсивные — для самых сильных е> 100 ООО. [c.315]

    Приспособление для спектрофотометрического титрования к нерегистрирующим спектрофотометрам рассматриваемого типа может быть выполнено довольно просто. Металлическую крышку кюветного отделения заменяют эбонитовой, проделывают в ней два отверстия одно для микробюретки, второе для механической мешалки. Кювета из оптического стекла должна иметь объем около 25 мл (для титрования в видимой области спектра можно использовать, например, кювету от фотоэлектрокалориметра ФЭК-М с / = 4 см). Стенки кюветы покрывают черным лаком, оставляя отверстие диаметром в 1 см на пути светового потока. Мешалка вводится через отверстия в крышке кюветного отделения так, чтобы ее конец находился против затемненного участка кюветы. Раствор реагента прибавляют из микробюретки, чтобы избежать значительного разбавления титруемого раствора. [c.265]

    Фотометрические методы определения концентрации растворов основаны на сравнении поглощения или пропускания света стандартными и исследуемыми растворами. Степень поглощения света фотометрируемым раствором измеряют с помошью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать аликвотную часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определяемым ионом окрашенное соединение. Если добавляемый реагент и все остальные компоненты раствора сравнения бесцветны и, следовательно, не поглощают лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду. [c.204]

    Способ изобрашния спектров поглощения. Если зафиксировать с помощью специального прибора изменение интенсивности поглощения пропущенного через вещество светового потока в зависимости ют длины волны, то можно получить спектральную кривую поглош/ения (спектр поглощения). Спектр поглощения в УФ или видимой областях выражается в виде графика, где на оси ординат обычно откладывают величину молярного коэффициента поглощения (экстинкцию) в или оптическую плотность раствора D, а на оси абсцисс — длины вола в нм (1 нм = 10 - см). Обычно вместо а используют Ig 8 . При пост- [c.125]

    Для определения оптической плотности применяют фотоколориметры двух типов визуальные и фотоэлектрические. В последних в видимой области света применяют, главным образом, селеновые фотоэлементы (наиболее чувствительные при к = 680 нм) — с внутренним фотоэффектом (см. стр. 270) или, реже, сурьмяно-цезиевые (А, = 480 нм)—с внешним фотоэффектом. Наибольшей точностью отличаются дифференциальные фотоэлектрические приборы, основанные на уравнипанци интенсивности двух световых пучков с номощьво щелевой диафрагмы. [c.177]

    В видимой области используют стекла различного состава, имеющие большую дисперсию, особенно для фиолетового и синего участков спектра. В ультрафиолетовой области в качестве оптического материала применяют кристаллический кварц. В вакуумной ультрафиолетовой области — природный флюорит (СаРг) и фтористый литий (LiF). В ближней инфракрасной области материалом оптики являются оптическое стекло и кристаллический кварц. Для фундаментальной инфракрасной области используют солевую оптику — LiF (до 6 мкм), Сар2 (до 9 мкм), Na l (до 15 мкм), КВг (до 27 мкм), sl (до 40 мкм). В далекой инфракрасной области применяют дифракционные решетки с различным количеством штрихов на 1 см. [c.52]

    Если комплекс оптически активен как за счет асимметрии центрального иона, так и из-за координации оптически активного заместителя, то вещество может показывать аномальную дисперсию, даже если оно не окрашено. Например, [Со-/-Ср1пЕп2]Хг характеризуется эффектом Коттона, а [Со-й -Рп-Ь Нз(Ы02)з] не проявляет его в видимой области. [c.59]

    А. Тизелиус разработал метод изучения электрофоретической подвижности белков. От прибора, предназначенного для изучения лиозолей (см. рис. 34, а), прибор Тизелиуса отличается некоторыми конструктивными особенностями. Наиболее существенное из них — применение разъемных кювет прямоугольного сечения. Этим достигается возможность наблюдения за движением неокрашенных в видимой области белков с помощью специальных оптических систем. Концентрация белков на различных участках прямоугольной ячейки регистрируется по изменению показателя преломления. Изучение градиента показателя преломления при электрофорезе дает возможность проводить качественный анализ смеси белков и их препаративное разделение по различию электрофоретической подвижности. Этот метод назван свободным электрофорезом. [c.216]

    Спектрофотометрнческое тнтрование проводят в приборах СФ-5, СФ-4, СФ-4А, СФД-2, в крышке кюветного отделения которых делают два отверстия для мнкробюретки и механической мешалки. Кювета должна иметь объем 25 мл. При работе в видимой области спектра применяют кювету из оптического стекла, в ультрафиолетовой области спектра — кварцевую или снабженную кварцевыми окошками, (Стенки-кюветы покрывают черным лаком, оставляя отверстие диаметром 1 см на пути светового потока. Мешалка и бюретка вводятся таким образом, чтобы их концы находились против затемненных участков кюветы. [c.268]

    Устройство и оптическая схема стилометра СТ-7. Стилометр СТ-7 предназначен для качестсенного н полуколичественного анализа легированных сталей по спектральным линиям видимой области спектра. Количественная оценка содержания отдельных компонентов производится по измерению относительных интенсивностей линий с [c.183]

    Источники излучения. Все используемые в оптической спектроскопии источники излучения являются излучателями непрерывного спектра. Для инфракрасной спектроскопии, а также для спектроскопии в видимой области, используют раскаленные излучатели для ультрафиолетовой спектроскопии — специальные газоразрядные лампы. Распределение интенсивности излучения по спектру для идеального термического излучателя описывается законом Планка для излучения энергии абсолютно черным телом. В широком диапазоне частот интенсивность излучения различна. Особенно мала она в самом конце длинноволновой области после прохождения максимума, ближе к концу коротковолновой области, интенсивность излучения быстро падает. Радиационные свойства излучателя и положение максимума интенсивности определяются температурой, химическим составом и состоянием поверхности этого излучателя. Испольчуемые в ультрафиолетовой области водородная и аейтериевая лампы характеризуются почти равномерным спектральным распределением энергии в интервале частот 33 ООО—50 ООО см ( 300—200 нм) [401. Сведения о наиболее часто используемых излучателях непрерывного спектра приведены в табл. 5.18. [c.235]

    Аналогичную конструкцию и оптическую схему имеют еще два спектрофотометра СФ16 и СФ-5. Первый из них рассчитан на работу в области спектра 186—1100 нм. Спектрофотометр СФ-5 имеет стеклянную оптику и поэтому может использоваться при работе только в видимой области. Источники сплошного света во всех этих спектрофотометрах питаются от сети через хорошие электронные стабилизаторы тока, так как электрическая компенсация не снижает требования к стабильности источника света. [c.311]

    Первые оптические исследования веществ относились к области видимого спектра, который образуется при переходе молекулы из одного электронного состояния в другое. Было замечено, что существенным свойством окрашенных органических соединений является их ненасыщен-ность. Как мы теперь знаем, это объясняется тем, что видимая область спектра соответствует переходам между уровнями я-электронов. Паризером, Парром и Поплом для описания я-электронных систем был предложен метод конфигурационного взаимодействия. Изложим идею этого метода. [c.131]

    Комплексное соединение никеля с а-фурилдиоксимом менее устойчиво оно разрушается при удалении избытка реагента щелочью, поэтому в ультрафиолетовой области проводить измерение поглощения а-фурилдиоксимата никеля невозможно. Тем не менее указанный реагент является ценным для фотометрического определения никеля, так как имеется возможность проводить измерение оптической плотности в видимой области спектра, X 438 нм, е = 1,9 10, реагент в этой об- [c.187]


Смотреть страницы где упоминается термин Оптические УФ и видимой области: [c.47]    [c.146]    [c.133]    [c.194]    [c.59]    [c.309]   
Инструментальные методы химического анализа (1989) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Видимая область

Видимость



© 2025 chem21.info Реклама на сайте