Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронно-колебательная связь сильна

    Таким образом, и в случае линейных молекул при наличии электронного вырождения и достаточно сильной электронно-колебательной связи адиабатический потенциал не имеет минимума. Однако в отличие от нелинейных молекул здесь ((Зе/й9д, о =0 для [c.206]

    Интерес представляют также сверхтонкие расщепления при наличии электронного вырождения. В предельном случае сильной электронно-колебательной связи, когда реализуются глубокие минимумы адиабатического потенциала, ведущие к инверсионному расщеплению (см. раздел IV. 4), влияние последнего на сверхтонкие эффекты своеобразно [296, 297, 333, 334]. В частности, в пренебрежении диполь-дипольным взаимодействием (когда можно принять, что электронный спин 5 = 0, например, по отмеченным выше соображениям релаксационного порядка) квадрупольное расщепление оказывается зависящим от температуры и уменьшается с ростом последней, что и наблюдается экспериментально [335]. Несколько другая интерпретация этих экспериментов предложена в работе [336]. [c.184]


    Случай сильной и слабой электронно-колебательной связи [c.388]

    Сильная электронно-колебательная связь 8 1). Этот случай фактически приведен на рис. ХН1.7. Можно показать, что в случае одной акцептирующей моды (5 1) [c.389]

    Потенциальные поверхности начального и конечного состояний в случае слабой (I) и сильной (II) электронно-колебательной связи (объяснение см. в тексте) [c.391]

    Часто поступают еще более просто — сравнивают спектры всех индивидуальных соединений, которые могут присутствовать в спектре, и для каждого из них находят хотя бы одну полосу, свободную от наложений, не заботясь о том, с каким именно колебательным (или электронным) переходом связано ее появление в спектре. Затем составляют несколько искусственных смесей разного состава и снимают их спектр для того, чтобы установить, не произошло ли сильное взаимодействие компонентов смеси между собой, которое может привести к сильному смещению аналитических полос и к появлению новых. [c.329]

    Эффективность флуоресценции фу определяется конкуренцией излучательного процесса kf и безызлучательных процессов интеркомбинационной /г,,с и внутренней конверсии. Скорость излучательного процесса не зависит от температуры, поэтому изменения Ф/ с температурой связаны с изменением и Поскольку с увеличением температуры на верхние колебательные подуровни состояния попадает все большая часть молекул и вероятность перехода через области пересечения потенциальных поверхностей возбужденного синглетного, триплетного и основного состояний возрастает, то и й с увеличиваются с ростом температуры. При понижении температуры обе константы скорости стремятся к предельным значениям, соответствующим интеркомбинационной или внутренней конверсии с самого нижнего колебательного подуровня 5(. Если при комнатной температуре вещество флуоресцирует слабо, при низкой температуре оно может стать сильно флуоресцирующим. Ввиду большого разнообразия безызлучательных процессов трактовка зависимости квантового выхода флуоресценции от температуры обычно затруднена. Наряду с вышеуказанными процессами это могут быть взаимодействия типа переноса заряда с растворителем, заселение высоколежащих триплетных состояний, специфическое электронно-колебательное взаимодействие и т. д. Зависимость квантового выхода флуоресценции от температуры можно представить уравнением  [c.147]

    Полоса 1—1 по деформационному колебанию при электронном переходе 2 состоит из трех электронно-колебательных подполос — П, 2 и 2 П. Как для N N, так и для ССО было найдено, что эти подполосы находятся на больших расстояниях одна от другой, что говорит о сильном электрон но-колебательном взаимодействии в электронном состоянии П. Структура первой из трех подполос очень похожа на структуру полосы О—О, за исключением того, что все линии в ветвях удвоены из-за /-удвоения в нижнем состоянии. Для N N или ССО было разрешено лишь очень небольшое число из всех 54 ветвей. В двух других подполосах наблюдается триплетное расщепление, которое быстро увеличивается с ростом N. Оно не может быть связано с расщеплением в нижнем электронно-колебательном состоянии так как это состояние относится к электронному типу 2, в котором спиновое расщепление мало скорее это расщепление обусловлено электронно-колебательным взаимодействием в верхнем электронном состоянии П. Как уже говорилось, постоянные спинового расщепления X и в таких электронно -колебательных состояниях 2 весьма велики, и в результате появляется по две подполосы как для перехода 2 П, так и для перехода 2 П. Первые из этих подполос связаны с верхними состояниями 2 ь а вторые — с состояниями 2э- и 2з+ соответственно. [c.112]


    Приведенное определение является достаточно строгим и надежно отличает химическую связь от, например, межмолекуляр-ной . Оно содержит требуемый от всякого научного определения экспериментальный критерий его идентификации перестройка электронных оболочек сказывается на всех основных физических и химических свойствах многоатомной системы и поэтому совокупность всех этих свойств составляет экспериментальный критерий проявления химической связи. При этом такая важная характеристика связи, как энергия, может оказаться менее чувствительной к электронному строению связи, чем, например, оптические спектры. Поэтому энергия связи сама по себе, как указывалось, не всегда может однозначно и достаточно полно характеризовать происхождение связи в ряде случаев наличие химической связи лучше всего обнаруживается по электронным спектрам. Кроме энергии связи и оптических спектров от химической связи сильно зависят колебательные спектры, спектры магнитного резонанса (электронного и ядерного), спектры ядерного квадрупольного резонанса и ядерного гамма-резонанса, магнитные и электрические свойства и др. [c.6]

    Эффекту Яна — Теллера в ЭПР посвящено большое число работ, исчисляющихся в настоящее время сотнями (см. обзоры [282, 325—328] и соответствующие главы в монографиях [321, гл. 21 267, глава III). Поясним наиболее отчетливое проявление эффекта на примере систем, обладающих инверсионным (туннельным) расщеплением (раздел VI. 4). Сильное влияние последнего на спектры ЭПР связано, прежде всего, с тем, что вместо одного спинового мультиплета при наличии инверсионного расщепления в системе имеется несколько близких мультиплетов, соответствующих различным инверсионным (электронно-колебательным) состояниям. Взаимодействуя между собой во внешнем постоянном магнитном поле, эти состояния приводят к сложному ходу уров- [c.237]

    Увеличение заселенностей возбужденных колебательных и вращательных уровней приведет к еще большему увеличению роли процесса диссоциации через электронно-колебательные уровни по сравнению с другими процессами. Это связано с тем, что коэффициенты скорости диссоциации резко зависят от номера колебательного уровня исходного состояния, а также могут зависеть от вращательной температуры молекул. Экспериментальные исследования процессов возбуждения, ионизации и диссоциации молекул в электрических разрядах при пониженных давлениях описаны в работах [23—25, 91, 110, 166—175]. Как следует из результатов, изложенных в предыдущем параграфе, в некоторых газах может сильно возрасти роль диссоциативного прилипания электронов в диссоциации молекул. [c.148]

    Так как на величину подобных разностей электронных энергий не очень сильно влияют указанные выше систематические неопределенности, то они будут учтены здесь вместе со значением = 300 кДж/моль р4 — электронная энергия С—С-связи, взаимодействующей исключительно с другими С—С-связями, как в случае (СНз)зС—С(СНз)з. Кроме того, были использованы стандартные значения (соответствующие температуре 298,15 К и давлению 0,1 МПа) Ь = 717,2 кДж/моль, На — 436,2 кДж/моль [7] и АЯ/(СН4) = —75 кДж/моль [6]. Энергия нулевых колебаний девяти колебательных мод —С—Н- и И—С—Н-связей метана получена равной 100 кДж/моль. Тогда полная электронная энергия метана (СН4) = —1765 кДж/моль вычисляется с помощью выражения (4.16). Из выражений (4.17) и (4.18) следует, что 6,2<57<8,4 кДж/моль. С учетом приведенных выше значений (СН4), р2, Рз и Р4, а также значения = = 6,5 кДж/моль получим а = —200 кДж/моль, /гу = 55 кДж/моль 0 = 0,4 кДж/моль, = 0,06 кДл[c.106]

    Интенсивность полос поглощения. Для аналитических целей широко используют спектры поглощения веществ в ультрафиолетовой, видимой, и ближней инфракрасной областях. Появление этих спектров связано с электронными или колебательными переходами. Обычно спектры поглощения получают при комнатной температуре, когда практически все молекулы находятся в невозбужденном колебательном и электронном состояниях. Поэтому вероятность поглощения фотона и перехода в возбужденное состояние зависит только от свойств самой молекулы — величин дипольного момента и соответствия правилам отбора. Чем чаще совершается такой переход, тем сильнее поглощение света данной длины волны, тем больше интенсивность полосы поглощения. [c.313]

    Оптико-спектроскопические методы, используемые в промышленном контроле, могут быть разделены на две основные группы электронная спектроскопия (спектроскопия в ультрафиолетовой и видимой областях спектра) и колебательная спектроскопия (спектроскопия в инфракрасной, ближней инфракрасной (ВИК) областях спектра, а также рамановская спектроскопия). В УФ и видимой областях спектра поглощение обусловлено переходами между атомными или молекулярными электронными энергетическими уровнями. Переходы между электронными энергетическими уровнями могут происходить только в том случае, если энергия падающего фотона соответствует разности энергий соответствующих уровней. Эти энергетические уровни для ближней ультрафиолетовой и видимой областей имеются в изолированных атомах, отдельных неорганических ионах, органических соединениях, содержащих сопряженные двойные связи, и большом числе разнообразных молекулярных веществ. Поглощение в ультрафиолетовой и видимой областях очень сильное, поэтому возможно определение концентраций на уровне нескольких частей на миллион. Однако полосы поглощения обычно очень широкие по сравнению с [c.656]


    Сложные молекулы характеризуются большим числом колебательных степеней свободы, сильным взаимодействием колебаний и поэтому непрерывным перемещением колебательной энергии от одной степени свободы к другой. Соответственно колебательные уровни энергии сложных молекул образуют, как правило, сплошную совокупность. Электронное и колебательные движения взаимодействуют друг с другом. Разделение этих видов движения, с хорошей степенью приближения реализуемое в случае простых молекул, оказывается, в сущности, невозможным для сложных молекул. Это связано с большим запасом колебательной энергии, приближающимся к величине, достаточной для Возбуждения электронной оболочки (см. также стр. 400) [159, 160]. [c.320]

    Инверсионное (туннельное) расщепление электронно-колеба-тельных уровней парамагнитных координационных систем, обладающих электронным вырождением и достаточно сильной электронно-колебательной связью (см. раздел 1У.4), оказывает весьма сильное влияние на спектры ЭПР. Это связано, прежде всего, с тем, что вместо одного спинового мультиплета при наличии инверсионного расщепления в системе имеется несколько близких мультиплетов, соответствующих различным инверсионным (электронноколебательным) состояниям. Взаимодействуя между собой во внешнем постоянном магнитном поле, эти состояния приводят к сложному ходу уровней, и большему, чем обычно, числу магнитно-дипольных переходов с сильной зависимостью вероятности последних от соотношения частоты резонанса йш и инверсионного расщепления б. [c.168]

    Фотоконформационный переход. Рассматривая роль различных факторов в физическом механизме переноса электрона, мы полагали (ХШ.5.6), что температурные изменения скоростей переноса электрона практически целиком обусловлены электронно-колебательными взаимодействиями, как это имеет место для окислительно-восстановительных реакций в растворах. Эта точка зрения поддерживалась результатами интерпретации двухфазной температурной зависимости скорости окисления цитрохрома с фотосинтетическим реакционным центром (РЦ) в клетках пурпурных бактерий (ХШ.5.12), см. рис. ХШ.1. Однако основанный на этих данных вывод о сильной электронно-колебательной связи при изменении зарядового состояния в пигментной системе РЦ впоследствии не нашел подтверждения. Посмотрим, каким образом регуляция процессов электронного транспорта в РЦ осуш ествляется за счет микроконфорамционных движений донорно-акцепторных групп и элементов белкового интерьера, (рис. XIII. 18). [c.411]

    В мультиплетных П- и Д-состояниях влияние электронно-колебательного взаимодействия сложнее. Рассмотрим кратко только случай состояний типа П. При слабой спин-орбитальной связи (случай связи Ь по Гунду) все остается, по существу, таким же, как в случае синглетных состояний. Это показано справа на рис. 60 в колонке с Л = 0. В левой части рисунка в колонке с е = О приводятся электронно-колебательные уровни, обусловленные лишь спин-орбитальным взаимодействием в предположении, что оно довольно сильное. Если же как спин-орбитальное, так и электронно-колебательное взаимодействия сравнимы по Ееличине, т. е. когда Л и 0)2 6 являются величинами одного порядка, то результат не будет просто наложением этих двух эффектов возникающая картина значительно сложнее, как это показано в центре рис. 60. Например, в некоторых случаях дублетное расщепление будет больше, чем при одном только спин-орбитальном взаимодействии. Подробные формулы, полученные Поплом [1П] и Хоугеном [731, можно нaйтJi в [П1], стр.. 42. [c.97]

    Сходный механизм уширения спектра действует, как известно в примесных кристаллах, где фононные уровни энергии сгруппировались в квазиненрерывные зоны. Оптический спектр примесного центра кристалла состоит из узкой бесфононной линии (чисто электронный переход) и широкой фононной полосы, обусловленной вибронными переходами [72]. Чем сильнее электрон-фононная связь, тем шире и интенсивнее фононная полоса (и соответственно тем слабее выражена безфононная линия). Наблюдаемый колебательный спектр фрагмента ОНО по форме похож на электронный спектр примесного центра. Поскольку ни один из флуктуационных механизмов не может обеспечить появление наблюдаемой полосы ИК-поглощения, мы будем рассматривать гидратированный протон в воде как примесь в квазикристаллической среде, а сравнительно узкую полосу вблизи 1200 см — как бесфононную, обусловленную чисто протонными переходами, а широкое непрерывное поглощение — как фононное крыло, обязанное различным сочетаниям возбуждений фононов в сольватной комплексе [73]. Ниже будет показано, что такое поглощение может появиться, если в системе с большим числом колебательных степеней свободы велико как протон-фононное взаимодействие, так и фононная частота. [c.189]

    Молекулы красителей содержат по 40 60 атомов, их молекулярные веса равны М = 300 500. Поэтому бесструктурность полос поглощения и флуоресценции [46] объясняется тем, что с каждым электронным переходом связано множество колебательных и вращательных подуровней с различными частотами, которые при столкновениях с молекулами растворителя испытывают сильное однородное уширение. Электростатическое взаимодействие с полярными молекулами растворителей также увеличивает ширину подуровней. Распределение населённостей основного и возбуждённых состояний молекулы определяется распределением Больцмана. За секунду молекула красителя испытывает примерно 10 столкновений с окружающими её молекулами растворителя. Поэтому время релаксации населённостей возбуждённых колебательных и вращательных подуровней к равновесному состоянию составляет несколько пикосекунд (рис. 8.2.32). Следует отметить, что безызлучатель-ный переход в триплетное состояние не только уменьшает квантовый выход флуоресценции, но и является причиной деградации красителей, поскольку молекула в триплетном состоянии весьма химически активна и может [c.420]

    Связь электронных и колебательных уровней сильна в этом случае ширина полосы пропорциональна квадрату средней частоты электронноколебательного перехода. Зеркальная симметрия спектров соблюдается только, если вычерчивать спектры в шкале длин волн (а не частот) (ср. стр. 27). [c.56]

    ЯВЛЯЮТСЯ колебания ОН-связей с энергией /iVoh 0,45 эВ. При невысоких температурах в основном оказывается заселенным нижний подуровень /о- Поэтому наиболее вероятен переход системы /ц—//д. В этом случае средняя энергия активации релаксации заряда МПС АЕ определяется энергией возбуждения электрона в зону проводимости Ge s. т. е. АЕ = E s Р, где F — энергия Ферми. Оказалось, что экспериментальные величины АЕ не сильно отличаются от этой разности. Малые вероятности захвата связаны не только с высокой поляризуемостью МПС, но и с необходимостью диссипации достаточно большой энергии, накопленной на воспринимающей моде ( 0,45 эВ). Для ее размена требуется не менее 10 фононов решетки. Захваченный электрон находится в состоянии сильной электрон-фононной связи с колебаниями адсорбционного комплекса. Однако локальные моды комплекса слабо связаны с фононным полем кристалла. Передача энергии возможна только за счет ангармонизма связей. Кроме того, в случае неупорядоченной реальной поверхности энергетический спектр поверхностных фононов отделен от спектра объемных фононов энергетическим зазором. В результате всего этого время жизни локальных колебаний комплексов намного превышает время колебательной релаксации в объеме, что подтверждается экспериментом [6]. [c.58]

    Электронные спектры координационных систем, непосредственно отражая их электронное строение, являются удобным средством исследования последнего. Задача состоит в том, чтобы возможно полнее извлечь ту ценную информацию об электронном строении, которую несут в себе спектры, на основе установления однозначного соответствия между ними. Трудности на этом пути связаны, прежде всего, с тем, что в отличие от случая атомов, энергии электронных термов сильно зависят от межъядерных расстояний, и поэтому стационарными являются не электронные, а электронно-колебательные (или даже электронно-колебательновращательные) состояния. [c.120]

    Степень ионности можно оценить несколькими методами, но, вероятно, самым прямым из них является электронная спектроскопия соединений данного элемента. Интервалы между электронными энергетическими уровнями, безусловно, зависят от межатомных взаимодействий, и изменения расположения этих уровней вызовут изменения в спектре. Невзаимодействующие ионы, по-видимому, будут иметь наиболее простые спектры, поскольку они обладают наивысщей симметрией и наименьщими энергиями взаимодействия с соседними ионами. Для ковалентно связанных атомов можно ожидать, что электронные спектры будут сильно зависеть от природы атомов, образующих ковалентные связи. Это и наблюдается в действительности. Для многоатомных ионов аналогичное применение находят колебательные спектры, так как частоты колебаний могут быть даже более чувствительными к степени взаимодействия с соседними атомами (рис. 33.15). [c.118]

    Электрические колебания в широком диапазоне частот могут быть получены сравнительно просто с помош,ью электронных схем Генератор представляет собой электронный усилитель, охваченный сильной положительной обратной связью. Генераторы могут быть с С-резонансными контурами, настроенными на генерируемую частоту, или iZ -фильтрами в цепи обратной связи. На рис. V.1 приведены схемы генераторов с С-резонансными контурами различного типа. С помощью таких схем можно получать синусоидальные колебания с частотой от десятков герц до десятков мегагерц. На рис. V.2 приведена схема генератора звуковой частоты, построенная по тину рис. V.1, а, на электронной лампе. Для уменьшения влияния нагрузки на работу генератора в качестве анода генератора использована экранная сетка пентода. Трансформатор нагрузки включается в анодную цепь лампы. Колебательный контур образован первичной обмоткой входного трансформатора и одним из конденсаторов С, емкость которых подбирается в зависимости от требуемой частоты. Трансформатор выбирают с коэффициентом трансформации от 1 1 до 1 5. Сечение сердечника составляет 4 см , I обмотка содержит 2700 витков провода ПЭЛ0,14, а обмотка II — 1000 витков того же провода. Нить накала питается через конденсатор емкостью 8 мкф при напряжении сети 127 в илп 4 мкф при напряжении сети 220 в. [c.148]

    По влиянию на спектры Черкасов разбил заместител на две группы. К первой отнесены те заместители (напри мер, алкильные, галоидные и т. д.), которые вызываю-некоторый батохромный сдвиг полосы, не изменяя су щественно ее вида по сравнению с соответствующей поло сой антрацена. Во вторую группу включены сильно изме няющие спектр заместители, которые имеют кратные связи сопряженные с л-системой антрацена, или связаны с угле родом антраценового ядра через атомы с неподеленным] парами электронов (например, NH2,0H). Если взаимодей ствию я- или /г-электронов заместителей второй группы > я-электронами антраценового ядра не препятствуют сте рические факторы, то спектры замещенных антрацен, изменяются настолько, что идентификация отдельны электронно-колебательных полос становится весьма труд НОЙ. При стерически затрудненном сопряжении, что на блюдается, в частности, у жезо-замещенных антрацена длинноволновая полоса поглощения имеет типичный дл антрацена вид, но в спектрах флуоресценции обнаружи ваются специфические изменения (размытая колебательна структура, нарушение зеркальной симметрии, увеличе ние стоксового сдвига). [c.156]

    Упрочнение квазиароматического цикла с водородной связью при возбуждении молекулы может наблюдаться при определенных условиях — при наличии копланарности и достаточной величине энергии л-электронного взаимодействия. В связи с этим нами были изучены спектры люминесценции 1,4-нафтохинона и его а-окси-производных. Если 1,4-нафтохинон в растворах гексана при 77° К дает спектр люминесценции с выраженной колебательной структурой, характеризующейся частотами валентных колебаний групп СО, то а-окси-1,4-нафтохинон проявляет слабую и затухающую люминесценцию (рис. 11). Этот факт можно объяснить разрывом водородной связи в пятичленном цикле при возбуждении молекулы вследствие нарушения донорно-акцепторного взаимодействия и невозможности образования устойчивого квазиароматического цикла с л-электронным взаимодействием. В некоторых случаях межмолекулярные связи в системах с л-электронами также могут сильно влиять на выход люминесценции и даже вызвать ее почти полное тушение. Действительно, наши результаты [311] показывают, что 1,4-антрахинон-дикарбоновая кислота имеет ярко-зеле-ную, но быстро и обратимо затухающую люминесценцию, в то же время спектр люминесценции порошка Р-антрахинон-карбоновой кислоты представляет структуру четырех интенсивных полос, сдвинутых в длинноволновую сторону, и не подвергается концентрационному тушению. Измерениями ИК-спектров установлено, что межмолекулярные водородные связи в Р-антрахинон-карбоно-вой кислоте осуществляются посредством карбоксильных групп (димеризация), а ассоциация молекул 1,4-антрахинон-дикарбоно-вой кислоты происходит с участием карбонильной (хромофорной) группы антрахинона и ОН карбоксильной группы. В диоксановом растворе ассоциация разрушается и раствор 1,4-антрахинон-дикар-боновой кислоты приобретает стабильную зеленую люминесценцию. [c.218]

    Связь переходных диполей двух антраценовых ядер в диантрилах I и II промежуточна между случаем сильной (чисто электронной) и слабой (чисто колебательной) связи. Таким образом, вычисленное расщепление, обусловленное взаимодействием между двумя точечными диполями в предположении сильной связи, представляется слишком большим. Авторы признательны Крейгу за данное им объяснение расхождения между вычисленным расщеплением для точечных диполей и наблюдаемым на опыте. [c.80]

    В качестве примера для многоатомной молекулы рассмотрим предиссоциацию в свободном радикале НСО. Как уже отмечалось (стр. 172), в системе полос в красной области, для которой верхнее состояние относится ктипу Ы", все полосы с К ФО крайне диффузны, а полосы с К — О — резкие. Следует напомнить, что в верхнем состоянии молекула линейна и что как верхнее, так и нижнее состояния образованы из состояния линейной конфигурации вследствие сильного взаимодействия Реннера—Теллера. При /С = О верхние состояния относятся к электронно-колебательному типу 2 , а уровни в непрерывной области — к состоянию (или М ), которое образуется из нормальных атомов и не может вызвать предиссоциацию состояния 2". Однако при /С > О существуют уровни с /С = /С и с соответствующей симметрией в непрерывной области. Поэтому предиссоциация для них разрешена и действительно наблюдается с большой интенсивностью. В дискретных полосах (с /С = 0) обнаружена небольшая диффузность линий, увеличивающаяся с ростом / возможно, это связано с гетерогенной предиссоциацией уровней К О ( 2 ) на уровни с /С = 1 непрерывной области энергий. [c.187]

    Как показано на рис. 16.10, фотоионизапця либо сильно связывающих, либо сильно разрыхляющих электронов приводит к изменениям равновесных длин связей. В этих случаях наиболее интенсивный пик (т. е. соответствующий вертикальной ионизащ1и) будет характеризоваться более высокой энергией, чем пик, соответствующий адиабатической ионизации (см., например, пик для N2). На самом деле относительные интенсивности (называемые коэффициентами Франка — Кондона) соответствующих колебательных пиков могут быть с достаточным успехом [39] рассчитаны теоретически. Для получения характеристик молекулярной орбитали, с которой удален электрон, оказываются также полезными колебательные частоты, наблюдаемые для состояния иони- [c.340]

    Однако это уравнение отражает рассматриваемую зависимость лишь в суммарной форме. В действительности эти с оотношения являются более сложными. Релаксация в той илн другой степени относится ко всем формам перемещения частиц в материале, но скорость релаксации их в данном полимере при одинаковых вйешних условиях может различаться в сильной степени. Перемещения электронов практически не задерживаются, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени в зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям конформации отдельных звеньев цепей и макромолекулы в целом, причем последние сильно зависят от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшается. Еще больше усложняются эти соотнощения в полимерах, содержащих структурные единицы, различные по составу и строению, т. е. в сополимерах, привитых полимерах и пр. В общем существует некоторый комплекс времен релаксации, характеризующий различную скорость релаксации разных форм перемещения частиц в данном полимере. Кроме того, из внешних условий на скорость релаксации существенно влияет давление. При повышении давления увеличивается напряжение и соответственно уменьшается время релаксации. Это широко используется на практике при формовании изделий из полимерных материалов. Время релаксации зависит также от присутствия в полимере других веществ. Так, на введении в полимер специальных пластификаторов основан один из методов увеличения скорости релаксационных процессов. [c.581]

    Релаксация в той или другой степени относится ко всем формам перемещения частиц в материале, но скорости релаксации разных частиц в данном полимере при одинаковых внешних условиях могут сильно различаться. Скорость перемещения электронов практически не изменяется, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени п зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям расположения отдельных звеньев цепей и в особенности макромолекулы в целом. Скорость перемещения макромолекул сильно зависит от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшаётся. Ещё больше усложняются эти соотношения в полимерах, содержащих струк- УрШе единицы различные по составу и строению, т. е. в сополимер ахТ привитых полимерах и пр. Для различных форм движения частиц в данном полимере время релаксации может сильно различаться, [c.219]

    Сказанное имеет отношение к электронной компоненте вероятности отдельных типов безызлучательных переходов. Экспериментальные наблюдения (о некоторых из них речь пойдет в дальнейшем) показывают, что вероятность переноса связана обратной зависимостью с разностью энергий двух состояний для данного типа электронного перехода. Этот результат может быть поясней с помощью принципа Франка — Кондона для безызлучательных переходов, обсуждавшегося для случая излс/-чательных переходов в разд. 2.7. Согласно этому принципу, ядра в молекуле неподвижны в течение всего электронного перехода, т. е. переходы вертикальны на энергетической диаграмме (см. рис. 2.3, а и б). При внутримолекулярных безызлучательных переходах сумма электронной и колебательной энергий должна оставаться постоянной в отличие от излучательного перехода, когда рождение фотона приводит к возникновению или изменению разности энергий начального и конечного состояний. Таким образом, в безызлучательном случае переход горизонтальный в той же мере, что и вертикальный , поэтому он ограничивается очень малой областью на энергетической кривой или поверхности. Перекрывание в этой области колебательных вероятностных функций для начального и конечного состояний будет определять эффективность переноса энергии при определенной фиксированной вероятности электронного перехода. На рис. 4.7 представлены три возможных случая данные кривые могут рассматриваться как кривые потенциальной энергии для двухатомной молекулы или как линии- пересечения энергетических поверхностей для более сложных молекул. На рис. 4.7, а показаны два состояния, X и У, сходной геометрии, но обладающие сильно различающейся энергией. Нижний колебательный уровень = 0 в состоянии X имеет то же значение энергии, что и верхний уровень V" в V. Вследствие характерного распределения колебательных вероятностных функций их перекрывание мало. На рис. 4.7,6 представлен случай, когда и разность энергий двух состояний, и разность квантовых чисел V и V" существенно меньше, что приводит к большему перекрыванию колебательных вероятностных функций. Таким образом, эффективность пересечения будет возрастать по мере того, как т. е. заселение уровня вблизи v" = Q благоприятст- [c.102]

    К числу осн. направлений развития К. х. относятся всестороннее изучение влияния электронной корреляции на св-ва молекул в разл. состояниях и на особенности взаимод. молекул между собой изучение связи разл. типов движений в молекулах и установление специфики состояний и св-в, в к-рых эта связь играет определяющую роль (напр., в случае неприменимости адиабатич. приближения) получение и накопление достоверных численных данных высокой точности по св-вам молекул, необходимых для решения прикладных вопросов развитие теории колебательных и колебательно-вращат. спектров молекул, анализ особенностей колебат. движения при сильном возбуждении многоатомных молекул, переход к локальным колебаниям и др. В исследовании межмолекулярных взаимодействий задачи К. х. заключаются в нахождении потенциалов взаимод. при разл. ориентациях молекул, установлении зависимости этих потенциалов от строения молекул, создании моделей, позволяющих учесть влияние среды на св-ва молекул и механизмы злементарнътх процессов. Это позволит решить ряд проблем адсорбции и гетерог. катализа, поведения примесных молекул в твердом теле и др. Разработка этих направлений оказывает заметное влияние на развитие К. х. твердого тела. [c.367]


Смотреть страницы где упоминается термин Электронно-колебательная связь сильна: [c.387]    [c.390]    [c.369]    [c.373]    [c.173]    [c.362]    [c.112]    [c.25]   
Биофизика Т.1 (1997) -- [ c.389 ]




ПОИСК





Смотрите так же термины и статьи:

Электрон связи



© 2025 chem21.info Реклама на сайте