Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литий степени окисления

    В главной подгруппе первой группы периодической системы находятся литий, натрий, калий, рубидий, цезий и франций В соответствии с номером группы в своих соединениях (в большинстве случаев ионных) они проявляют всегда степень окисления -Ы. Чисто ковалентное а—ст-связывание имеет место в газообразных молекулах Кза, Ка и т. д. Эти элементы — самые неблагородные . Их стандартные потенциалы порядка от —2,7 до —3,0 В (ср. табл. В.14). Ионные радиусы сопоставлены в табл. А.16. Обраш,ает на себя внимание тот факт, что при переходе от натрия к калию изменение радиусов оказывается, большим, чем в следующем за ними ряду элементов К—НЬ—Сз почему ). Это обстоятельство является главной причиной отличия свойств натрия от его более тяжелых аналогов. С учетом этого становится понятной аналогия в свойствах соответствующих соединений калия, рубидия и цезия. Особо следует под  [c.597]


    Составьте формулы следующих соединении а) нитрида лития (соединения лития с азотом) б) сульфида алюминия (соединения алюминия с серой) в) фторида фосфора, в которых электроположительный элемент проявляет максимальную степень окисления. [c.47]

    Одиако второй наружный слой у элементов первой группы неодинаков. Этим обусловлено различие в их свойствах и необходимость деления первой группы элементов на две подгруппы главную и побочную. Главная подгруппа включает литий, натрий, калий, рубидий, цезий и франций. Все они содержат на предпоследнем слое 8 электронов. Побочную группу составляют медь, серебро и золото. Предпоследний электронный слой этих элементов состоит из 18 электронов. Некоторые электроны этого слоя могут переходить в наружный слой и принимать участие в химических реакциях. Это обусловливает переменную степень окисления элементов этой группы. [c.135]

    Литий, натрий, калий, рубидий, цезий и франций в соединениях проявляют степень окисления -fl. Атомы этих элементов легко отдают единственный электрон внешнего слоя и поэтому являются сильными восстановителями. Их восстановительная способность растет от лития к францию. Из всех простых веществ наиболее сильным восстановителем является франций, так как его атомы больше атомов дру- [c.89]

    Литий Li (лат. lithium, от греч. lithos — камень). Л. — элемент I группы 2-гс периода периодич. системы Д. И. Менделеева, п. н. 3, атомная масса 6,939. Л. был открыт в 1817 г. Достаточно широко распространен в природе (горные породы, минеральные источники, морская вода, каменный уголь, почвы, животные и растительные организмы). Л.—серебристо-белый, самый легкий металл, принадлежит к щелочным металлам. В соединениях Л. проявляет степень окисления Ь1. На воздухе тускнеет вследствие образования оксида LiaO и нитрида Li ,N. С водой реагирует менее энергично, чем другие щелочные металлы. Гидроксид Л. является сильным основанием. Л. окрашивает пламя в карминово-красный цвет. Получают Li электролизом хлорида лнтия. Л. Li имеет большое значение для ядерной энергетики его изотоп применяется для получения трития Ы -р 0 = Н -Ь jHe. Л. используют для изготовления регулирующих стержней в атомных реакторах, как теплоноситель в урановых реакторах. Л. применяют в черной и цветной металлургии, в химии (литийорганические соединения). Соединения Л. применяются Б силикатной промышленности и др. [c.77]


    Вторая группа. Для всех элементов этой группы характерна степень окисления - -2. Атомы элементов главной подгруппы (Ве, Mg, Са, 5г, Ва и На) имеют на внешнем слое два з-электрона. По восстановительной способности элементы этой подгруппы уступают щелочным металлам (атомы последних имеют б6льц1ие размеры), хотя в связи с возрастанием атомных радиусов Са, 8г, Ва и Ка являются сильными восстановителями. Ионы Ве2+, Са +, Зг - , Ва - и Ка - , будучи аналогами ионов подгруппы лития, имеют конфигурацию атомов благородных газов, но отличаются от зарядом и меньшими радиусами. Поэтому их гидроксиды слабее гидроксидов щелочных металлов. Рост радиусов ионов в ряду Ве +—Ка + приводит к тому, что если Ве(ОН)г — амфотерное соединение, а Mg(0H)2 — слабое основание, то Са(ОН)2 — сильное основание, а Ва(0Н)г — очень сильное основание, хорошо растворимое в воде это щелочь, что нашло отражение и в его названии (едкий барит). [c.90]

    Уникальное положение водорода в Периодической системе. Водород — первый элемент и один из двух представителей первого периода системы. По электронной формуле 1.5 он формально относится к 5-элементам и является аналогом типически элементов I группы (лития и натрия) и собственно щелочных металлов (подгруппа калия). Это обусловливает сходство оптических спектров водорода и щелочных металлов. Водород и металлы 1А-группы проявляют степень окисления +1 и являются типичными восстановителями. Однако в состоянии однозарядного катиона И (протона) водород не имеет аналогов. В металлах 1А-группы валентный электрон экранирован электронами внутренних орбита-лей. У атома водорода отсутствует эффект экранирования, чем и объясняется уникальность его свойств. Кроме того, единственный электрон атома водорода является кайносимметричным, а потому исключительно прочно связан с ядром (Д = 13,6 В или 1312 кДж/моль). [c.292]

    Составьте электронные формулы молекул DjO и ND . Укажите степени окисления элементов и геометрическую форму молекул. Составьте формулы веществ хлорид дейтерия, сульфат дейтерия, дейтерид лития, оксид трития. [c.113]

    Элементы 1А-группы периодической системы Д. И. Менделеева — литий, натрий, калий, рубидий, цезий и франций — называются щелочными металлами. Атомы этих элеме гтов имеют на внешнем уровне по одному s-электрону, который они легко отдают при химических реакциях, превращаясь в положительные однозарядные ионы Э+. Проявляют степень окисления только +1. [c.201]

    Одинаковое строение не только внешнего, но и предшествующего электронного уровня (за исключением лития и бериллия) обусловливает ряд общих свойств (одинаковую степень окисления и однотипность соединений). Но с увеличением заряда ядра и числа электронов в атомах элементов периодической системы наблюдаются сверху вниз некоторые качественные различия между ними. В подгруппах сверху вниз увеличивается число квантовых уровней, а следовательно, и радиусы атомов, вследствие чего требуется меньше энергии на отрыв электрона, т. е. наблюдается уменьшение энергии ионизации. Поэтому от лития к францию, от бериллия к радию увеличивается способность атомов отдавать электроны, усиливаются металлические свойства. [c.76]

    Литий. Особенности лития. В отличие от водорода, у которого единственный электрон на кайносимметричной 1з-орбитали, у лития на кайносимметричной 2р-орбитали нет еще ни одного электрона. Имеющийся один электрон 2 -орбитали не является кайносимметричным. Это один из главных аргументов, почему водород не может быть предшественником лития по группе 1А. Как и другие металлы 1А-группы, литий стабильно проявляет степень окисления +1. Тем не менее из-за наличия кайносимметричной 2 >-оболочки химия лития существенно отличается от химии его аналогов по групп(з. В степени окисления +1 литий по сравнению с другими элементами 1А-группы является лучшим комплексообразователем. Этим, в частности, объясняется большая отрицательная величина стандартного электродного потенциала лития (-3,05 В). Дело в том, что энтальпия гидратации катионов лития сравнительно велика (ДЯ°д = -468,6 [c.304]

    Короткий и длинный варианты периодической системы не разрешают также ряда частных вопросов, имеющих, однако, существенное значение. К таким вопросам относится, например, размещение водорода в периодической системе. Водород обычно помещают или в группу щелочных металлов над литием, или в группу галогенов над фтором. Так поступают, имея в виду, что водород может быть в своих соединениях в степени окисления как -f 1 (что характерно для щелочных металлов), так —1 (что характерно для галогенов). Однако этот мотив является чисто формальным, так как водород по своему химическому характеру и физико-химическим свойствам не сходен ни со щелочными металлами, ни с галогенами. Особенно противоречит принципу изме- [c.27]


    Элементы литий Ы, натрий Ка, калий К, рубидий КЬ, цезий Сз и франций Рг составляют 1А-группу Периодической системы элементов Д. И. Менделеева. Групповое название элементов этой группы — щелочные металлы. На валентном электронном уровне атомов элементов 1А-группы содержится по одному электрону (и5 ). Вследствие этого в соединениях щелочные металлы проявляют степень окисления +1. Низкая электроотрицательность щелочных металлов обусловливает существование их в виде однозарядных катионов, образующих со многими анионами соответствующие соли. В целом свойства элементов 1А-группы отвечают свойствам типичных металлов (ионные связи в соединениях, высокие восстановительные потенциалы в водном растворе, сильнощелочной характер оксидов М2О и гидроксидов МОН). [c.114]

    Ионные связи типичны для соединений этих элементов. Ковалентная связь существует только в димерных молекулах лития, натрия и цезия, которые возникают при испарении металлов. Большое различие между 1-м и 2-м потенциалами ионизации (2-й потенциал равен 75,7 эВ у лития и 23,4 эВ у цезия) соответствует тому, что степень окисления -Ь 1—единственная возможная для щелочных металлов. [c.151]

    Химические свойства. При обычных условиях азот взаимодействует только с литием, а при высоких температурах окисляет многие металлы и неметаллы, образуя нитриды, в которых N имеет степень окисления -3 например  [c.338]

    Некоторым атомам обычно приписываются постоянные степени окисления. Например, степень окислеиия фтора в соединениях всегда равна —1, лития, натрия, калия, рубидия, цезия и франция +1, магния, кальция, стронция, бария и цинка +2, алюминия - -3. [c.58]

    Металлические свойства элементов подгруппы бора выражены значительно слабее, чем у элементов подгруппы бериллия. Так, элемент бор, который в периоде расположен между бериллием и углеродом, относится к элементам-неметаллам. Он имеет наибольшую энергию ионизации атома (см. п. 3 табл. 13.3). Внутри подгруппы с возрастанием заряда ядра энергия ионизации атомов уменьшается и металлические свойства элементов усиливаются. Алюминий — уже металл, но не типичный. Его гидроксид обладает амфотерными свойствами. У таллия более сильно выражены металлические свойства, а в степени окисления + 1 он близок к элементам-металлам подгруппы лития. [c.248]

    Как изменяются свойства гидроксидов элементов одного периода системы Д. 1 . Менделеева в высшей степени окисления а) лития, бериллия, углерода  [c.15]

    При растворении в оксиде никеля (II) NiO (светло-зеленый) оксида лития LijO окраска кристалла изменяется (становится серо-черной). Кроме того, кристалл приобретает полупроводниковые свойства. Как можно объяснить эти факты (Учтите, что для никеля возможна степень окисления +3.) [c.107]

    Алюмогидрид лития [161 или триэтилфосфит [17] можно использовать для восстановления (с образованием гликолей) других соединении высокой степени окисления, иапример перекисей и гидропе- [c.248]

    Формально к соединениям водорода со степенью окисления -1 относятся и комплексные гидриды, например боро- и алюмогидриды лития Li[BH4] и Li[AlH4] (тетрагидроборат и тетрагидроалюминат лития). Способность образовывать комплексные анионы характерна для координационно ненасыщенных простых гидридов бора, алюминия и других sp-металлов III группы Периодической системы. Комплексные гидриды термодинамически более стабильны по сравнению с простыми. Боро- и алюмогидриды щелочных и щелочно-земельных металлов плавятся без заметного разложения, хорошо растворяются во многих органических растворителях. В воде они также разлагаются с выделением водорода. Комплексные гидриды активных металлов получают либо прямым синтезом из простых веществ при повышенных температуре и давлении водорода, либо взаимодействием простых гидридов с галогенидами. Комплексные гидриды других металлов получают обменным разложением их галогенидов с боро- и алюмогидридами щелочных металлов, например [c.297]

    В русской номенклатуре оксиды называются окислами. Окислы элементов, проявляющих в соединениях постоянную степень окисления, называют окисями например, ЫгО — окись лития, 5г0—окись стронция, А12О3 — окись алюминия. [c.10]

    Химическая экология природных вод. Химический состав и классификация природных вод. Макрокомпоненты хлорид-, сульфат-, карбо-нат- и гидрокарбонат-ионы, катионы натрия, калия, магния, кальция. Ионы кремния, железа, алюминия, фосфора, азота в разных степенях окисления, органические вещества в природных водах. Микрокомноненты ионы лития, стронция, меди, серебра, хрома, марганца, бромид-, иодид-ионы и их способность к комилексообразовапию. Эколого-химические особенности загрязнения гидросферы. Металлы как загрязняющие вещества источники ностунления в воду, токсические эффекты, химическое состояние. Органические соединения - загрязнители вод разных типов хлорорганические, фосфорорганические соединения. Особенности нефтяного загрязнения. Детергенты в природных водах. Коллоидные ПАВ и их влияние на загрязнение природной воды. [c.4]

    Общая характеристика. Все атомы указанных элементов имеют по одному валентному электрону на внешнем электронном уровне, а на предпоследнем — два электрона у лития (л—1)ь 2, у всех остальных по восемь электронов (п—Первые элементы периодов — щелочные металлы (кроме водорода) — имеют наибольший атомный объем и наибольший радиус атома и наименьший потенциал ионизации ио сравнению с остальными элементами соответствующего периода. Водород, будучи первым элементом первого периода, имеет кое-что общее со щелочными металлами сходство спектров, степени окисления 4-1. Но Нт-ион не имеет аналогов, так как он очень мал по сравнению с катионами щелочных металлов и существует только в водных растворах в виде НзО+-иона. Потенциал ионизации атома Н значительно больше потенциалов ионизации щелочных металлов, а восстановительная способность водорода намного меньше. Водород имеет больше сходства с галогенами, явля- [c.334]

    Аддукты с аммиаком (аммины) и с водой (гидраты). Аддукты с аммиаком (аммины) получают действием аммиака на соль, используя газообразный или жидкий аммиак и безводную соль, или кристаллизацией солн из аммиачного раствора. При получении аддуктов солей кобальта (III) с аммиаком нз солей кобальта (И) необходимо одновременное окисление кобальта до степени окисления +3, что может быть достпгнуто пропусканием воздуха через аммиачный раствор. Трудно сделать какое-либо обобщение относительно устойчивости аддуктов с аммиаком по сравнению с гидратами, потому что, как станет ясно из дальнейшего изложения, аддукты с аммиаком — это большая группа соединений, сильно различающихся по составу и устойчивости. В качестве крайних случаев можно указать чрезвычайно неустойчивые аммиачные аддукты галогенндов лития и устойчивые аммины кобальта и хрома. [c.433]


Смотреть страницы где упоминается термин Литий степени окисления: [c.31]    [c.76]    [c.31]    [c.49]    [c.271]    [c.295]    [c.214]    [c.115]    [c.656]    [c.102]    [c.434]    [c.447]    [c.514]    [c.24]    [c.616]    [c.283]    [c.45]    [c.146]    [c.152]    [c.510]    [c.166]   
Справочник по общей и неорганической химии (1997) -- [ c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Окисления степень



© 2025 chem21.info Реклама на сайте