Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинация свободных радикалов при полимеризации

    Этот процесс кинетически является типичной неразветвленной цепной реакцией, поскольку идет с образованием свободного радикала, т. е. с его регенерацией. Каждый акт присоединения к растущему свободному радикалу новой молекулы мономера дает звено цепи. Длина цепи показывает, сколько молекул мономера вступило в процесс полимеризации в расчете на один начальный свободный радикал. Это — кинетическая длина цепи в отличие от длины цепи образующегося полимера (степени полимеризации). Если процесс полимеризации не осложнен дополнительными элементарными стадиями (например, стадиями передачи цепи), то степень полимеризации равна кинетической длине цепи v при обрыве цепи диспро-порционированием, и равна удвоенной кинетической длине цепи 2v при обрыве в результате рекомбинации. [c.386]


    В качестве инициаторов этой реакции используют соединения, генерирующие свободные радикалы. Присоединение свободного радикала к молекуле ненасыщенного мономера дает новый свободный радикал, который в свою очередь присоединяется к следующей молекуле мономера, образуя еще более крупный свободный радикал, и т. д. Обрыв цепи происходит при рекомбинации или диспропорционировании двух радикалов. В процесс цепной радикальной полимеризации входят реакции инициирования (схемы 1, 2), роста цепи (схемы 3, 4) и обрыва цепи (схема 5). Для реакций цепной полимеризации обычно характерны следующие особенности, отличающие их от процессов ступенчатой полимеризации (а) рост цепи происходит путем быстрого присоединения молекул мономера к небольшому числу активных центров (б) скорость полимеризации очень быстро достигает максимального значения и затем остается более или менее постоянной до тех пор, пока не будет израсходован весь инициатор (в) концентрация мономера равномерно у-меньшается (г) даже при низкой степени конверсии мономера в продуктах реакции содержатся полимеры с высокой молекулярной массой. [c.301]

    Скорость реакции инициирования (а) (образования радикала RI) обозначим Ши- Константы скоростей всех реакций роста цепи будем для простоты считать одинаковыми и равными Ар. Так как процесс радикальной полимеризации обычно протекает в газе под давлением или в жидкой фазе, преобладающим является квадратичный обрыв цепей. Обрыв цепей, как показано на схеме, может осуществляться двумя способами путем рекомбинации (г) и путем диспропорционирования свободных радикалов (д), когда происходит передача атома от одного свободного радикала к другому, приводящая к образованию двух валентно-насыщенных молекул. При этом у частицы, отдающей атом, возникает двойная связь. В реакции обрыва могут участвовать любые радикалы (которые могут быть и одинаковой длины). Константу скорости обрыва обозначим ко. [c.522]

    Скорость реакции инициирования (а) (образования радикала Кг) обозначим Ша. Константы скоростей всех реакций роста цепи будем для простоты считать одинаковыми и равными кр. Так как процесс радикальной полимеризации обычно протекает в газе под давлением или в жидкой фазе, преобладающим является квадратичный обрыв цепей. Обрыв цепей, как показано на схеме, молсет осуществляться двумя способами путем рекомбинации (г) и путем диспропорционирования свободных радикалов (д), когда происходит передача атома от одного свободного радикала к другому, [c.526]


    Рост макромолекул при радикальной полимеризации продолжается до тех пор, пока на конце растущей цепи сохраняется активный свободный радикал. Реакции обрыва цепи могут происходить вследствие изомеризации активного макрорадикала в неактивный, присоединения к активному макрорадикалу какой-либо примеси, что приводит к дезактивации радикала. Кроме этих процессов, к обрыву кинетической цепи приводят реакции рекомбинации и диспропорционирования свободных радикалов, в результате которых количество активных центров в системе убывает. [c.157]

    Скорость распада инициатора полимеризации зависит от его природы, температуры, характера среды, наличия восстановителя и пр. Не все свободные радикалы, образующиеся при распаде инициатора, вызывают реакцию полимеризации. Доля свободных радикалов, инициирующих полимеризацию, по отношению к их общему количеству, определяет эффективность инициатора. Непроизводительный расход свободных радикалов объясняется их рекомбинацией и участием в побочных реакциях. Если термический распад инициатора происходит в растворе, то оба радикала инициатора находятся близко друг к другу, окружены молекулами растворителя и могут исчезать вследствие рекомбинации. [c.140]

    При блочной полимеризации (60 °С) стирола в присутствии 0,01 моль -л ингибитора получен полимер с Х = = 800. Сколько свободных радикалов содержится в реакционной смеси при стационарном режиме и каковы начальные скорости инициирования и полимеризации В расчете используйте следующие данные кр =145 л моль" с к = 2,9 ж X 10 л моль с м=l,0 10 i = О, z = 0,45. Одна молекула ингибитора обрывает рост одного радикала обрыв без участия ингибитора происходит путем рекомбинации. При расчете учтите изменение объема с повышением температуры. [c.72]

    Несмотря на то что определение содержания концевых групп представляет собой прямой метод исследования механизма обрыва цепи, важно, чтобы при его применении были выполнены определенные условия. Эти условия были обсуждены Бевингтоном, Мелвиллом и Тейлором [38]. Они сводятся к следующему а) должен быть известен состав радикала инициатора, дающего начало росту цепи б) процессы термической и фотохимической полимеризации должны протекать в незначительной степени в) дегидрирование мономера радикалами инициатора не должно быть значительным г) если используются радиоактивные соединения, то под влиянием их радиоактивности не должны образовываться свободные радикалы из молекул мономера или растворителя д) скорость реакций передачи цепи должна быть очень мала, иначе обрыв цепи будет происходить не только по механизмам диспропорционирования или рекомбинации двух растущих цепей. [c.273]

    Активированная молекула может образовать с мономером димер, сохраняющий свою активную форму. Последний аналогичным образом превращается в тример и т. д. Таким путем цепь продолжается дальше и растет, пока не наступит обрыв, т. е. дезактивация конечной активной группы. Причинами обрыва цепи могут быть изомеризация в устойчивую форму, реакция между двумя растущими цепями, рекомбинация радикалов и т. д. Длина цепей может быть различной. Так, например, для случаев винильной полимеризации установлено, что каждый свободный радикал полимеризует до 550 молекул. [c.628]

    Разрыв полимерных цепей под влиянием механических воздействий сопровождается образованием радикалов на разорванных концах цепей. Используя радикалы обработанных таким образом полимеров для инициирования полимеризации мономера, синтезирова.ти блок-сополимеры. Когда смесь двух полимеров подвергается механическому воздействию, блок-сополимеры образуются в результате взаимодействия макрорадикалов различной химической природы. Практически полученные продукты представляют собой смеси привитых и блок-сополимеров, поскольку в некоторых случаях в результате реакции передачи цепи свободный радикал образуется не на конце полимерной цепи. Кроме того, поскольку стирол является единственным мономером, при полимеризации которого, как было показано, обрыв цепи происходит в результате рекомбинации, обрыв цепи двух полимерных радикалов должен происходить в результате диспропорциопировапия с образованием одной полимерной цепи, содержащей на конце двойную связь. При сополимеризации этой цепи со свободным полимерным радикалом образуется привитой сополимер. [c.278]

    В начале XX в. химики открыли свободные радикалы как одну из активных форм химического вещества. Оми образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, например, радикал метил СНз или этил СНз — СНг с трехвалентным атомом углерода. Свободные радикалы характеризуются наличием одиночных (неспарепных) электронов, чем и объясняется их исключительная химическая активность, способность к рекомбинации. Свободные радикалы могут вызвать цепную реакцию в. молекулах, которые при других условиях являются устойчивыми. Оказалось, что многие процессы (окисление, крекинг, полимеризация непредельных соединений и т. д.) протекают как радикально цепные. [c.78]


    Полимеризация эфиров метакриловой кислоты, как и свободной кислоты (см. опыт 263), протекает по гемолитическому механизму через образование свободных радикалов. Поставщиком радикалов для построения полимерной цепи является перекись (см. пояснения к опытам 18, 44, 181). Так, перекись бензоила легко распадается на свободные радикалы eHs OO-. Такой радикал присоединяется к одному из атомов углерода двойной связи, а неспаренный электрон появляется у второго из этих атомов. Образовавшийся новый свободный радикал наращивает цепь далее обычно с очень большой скоростью, пока не наступит ее обрыв в результате присоединения другой растущей цепи ( рекомбинация ) либо по другим причинам. Ингибитор, в данном случае гидрохинон, связывает свободные радикалы и обрывает рост цепи. Чем больше перекиси бензоила добавлено в мономер, тем быстрее протекает полимеризация при заданной температуре. Перекись водорода малорастворима в мономере, и полимеризация протекает с ней гораздо медленнее. [c.298]

    Hз)2 ( N)], или диазоаминосоединения (СвНь или СвНь—К=К ). Этот свободный радикал остается связанным с началом скелета полимера. Что касается конца молекулы полимера, то это может быть или водород, вырванный из мономера, или какой-либо другой атом того же происхождения, или даже, как показал С. С. Медведев, это может быть свободнорадикальный конец, иммобилизованный благодаря вязкости среды и лишь медленно окисляющийся кислородом воздуха или претерпевающий ту или иную из реакций обрыва цепи, например рекомбинацию. Такие застрявшие в полимере свободнорадикальные концы макромолекул (а может быть, и перекиси, образовавшиеся из них и 0 ) ответственны за то, что часто затравка полимера вызывает полимеризацию мономера. [c.569]

    Константы скорости реакции рекомбинации настолько велики, что скорость обрыва цепи в жидкой фазе поддается диффузионному контролю, т. е. диффузия двух радикалов в растворе при встрече с каждым другим свободным радикалом является медленным процессом, и образование связи происходит, как только встретятся два радикала. В этих условиях константы скорости обрыва цепи зависят от природы растворителя и, особенно, от его вязкости. Одним очень нежелательным примером этого является так называемый эффект Тромс-дорфа скорость полимеризации некоторых мономеров возрастает с увеличением выхода реакции. По мере возрастания концентрации полимера в реакционном растворе увеличивается его вязкость, и скорость обрыва цепи снижается. Следовательно, скорость полимеризации, которая пропорциональна /Собр/кр , возрастает. [c.298]

    Френкель С. Я., в кн. Энциклопедия полимеров, т. 2, М., 1974. С. Я. Френкель. МАКРОРАДИКЛЛЫ, макромолекулы, обладающие не-спаренным электроном на внеш. орбитали. Различают свободные (нейтральные) М. я заряженные (анион- в катион-радика.1ы). Образукгтся при разрыве хим. связей в основной и боковой цепях макромолекул под воздействием, напр., ионизирующих излучений, света, мех. напряжений, низкомол. радикалов, при радикальной полимеризации, взаимод. макромолекул со своб. радикалами, в процессах переноса электрона и т. п. М. вступают в р-ции присоединения, замещения, изомеризации, диспропорционирования, рекомбинации. Играют большую роль при окислении, старении, и модификации полимеров. [c.310]

    Рекомбинация радикалов по механизму миграции свободной валентности, очевидно, происходит при радикальной полимеризации. Радикал начинает и замыкает полимерную цепь. Однако роль радикалов в известных процессах полимеризации в твердой фазе не была твердо установлена. Мы попытались выяснить роль радикалов при полимеризации ацетальдегида, протекающей по-карбонильной связи при низких температурах, как это было показано в работах [6, 7]. Спектр ЭПР радикалов, образую-)цихся при у-облучении твердого ацетальдегида, приведен на рис. 2. Он имеет 10 линий сверхтонкой структуры (СТС) (а). При облучении ультрафиолетовым светом этот спектр превращается в пятилинейный (б). Это дает основание считать, что-первоначальный спектр представляет собой наложение спектров не менее чем двух радикалов. Мы разложили исходный спектр па два спектра пятилинейный спектр с биномиальным распределением интенсивностей 1 4 6 4 1 и расщеплением 20 э и спектр также с пятью слабо разрешенными линиями СТС. Можно предположить, что в первичном процессе образуется радикал [c.217]

    Интересно отметить, что межцепной обмен при радикальной полимеризации по первому механизму в принципе может протекать, неограниченное время, поскольку число радикалов, погибающих при рекомбинации, равно числу радикалов, образующихся в результате самогенерации при деструкции макромолекул. Межцепной обмен, протекающий по второму механизму, сопровождается гибелью свободных радикалов в системе, поскольку в каждом акте рекомбинации расходуется два радикала, а в акте деструкции цепи новые радикалы не образуются. Поэтому процесс межцепного обмена в этом случае заканчивается тогда, когда израсходуется весь инициатор. [c.10]


Смотреть страницы где упоминается термин Рекомбинация свободных радикалов при полимеризации: [c.301]    [c.517]    [c.492]    [c.492]   
Основы химии высокомолекулярных соединений (1961) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация свободных радикалов

Радикал рекомбинация

Рекомбинация

Рекомбинация свободных радикало

Свободные радикалы

Свободные радикалы ион-радикалы



© 2024 chem21.info Реклама на сайте