Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связывающая энергия свободная

    Выражение АС° = ТА8° — АН° связывает изменение свободной энергии с изменением энтропии системы (Л15°) и изменением энтальпии системы (АЯ°). Величины ДС°, А6 ° и АН° — основные термодинамические характеристики реакций комплексообразования, определяющие устойчивость комплексов. [c.26]

    Этот метод основан на эмпирическом уравнении, которое связывает избыточную свободную энергию растворенного вещества прп бесконечном разбавлении в растворителе с рядом констант. Соотношение избыточной свободной энергии и коэффициента активности следующее  [c.205]


    Основываясь на уравнении (4.1), можно оценить влияние кривизны поверхности на молярную свободную энергию вещества. Обычно ее связывают с давлением насыщенных паров жидкости по уравнению Кельвина [c.189]

    Это уравнение связывает капиллярное давление мениска Р/1 с шириной щели Н и толщиной пленок к, зависящей, в свою очередь, от П = Р. Здесь g h,H) и О (Я) — избыточные удельные свободные энергии взаимодействия участков щели, покрытых пленками 1 (рис. 1.7) и заполненных жидкостью 2, соответственно. Для расчетов ё Ь,Н) и С (Я) используются изотермы смачивающих пленок П(/г) и изотермы расклинивающего дав- [c.18]

    Это важное соотношение связывает константу равновесия реакции со стандартным изменением свободной энергии для данной реакции. Константа равновесия, совпадает с кажущейся константой равновесия, относя- [c.113]

    Со значением свободной энергии, отнесенной к отдельному компоненту сложной материальной системы, связывают понятие химического потенциала (в большинстве случаев он определяется для 1 моля вещества). Химический потенциал зависит от свойств вещества н концентрации данного компонента в системе. Каждый процесс, ведущий к изменению состава (например, диффузия, химическая реакция), протекает п направлении уменьшения химического потенциала всех компонентов системы. Следовательно, если химический потенциал некоторых компонентов материальной системы в различных точках имеет различную величину, то этот компонент при отсутствии каких-либо препятствий перейдет от точки с большим химическим потенциалом к точкам с меньшим химическим потенциалом. В результате система приближается к равновесию и достигает его, когда химические потенциалы всех компонентов по всему объему станут одинаковыми. [c.9]

    Теория переходных состояний связывает скорость реакции с изменением свободной энергии Гиббса ДО при образовании переходного состояния из основного состояния. Эту теорию можно использовать для количественной оценки реакционной способно- [c.190]

    Почему при участии основания скорость реакции возрастает Можно указать много причин. В основном это происходит благодаря тому, что основание (имидазол) связывает в переходном состоянии (ПС) протон атакующей молекулы воды, так что на атоме кислорода в составе последней сосредоточена повышенная электронная плотность. Таким образом, этот атом кислорода воды становится более отрицательно заряженным и возрастает его способность передавать электронную пару карбонильной группе. Суммарный результат — понижение свободной энергии активации в присутствии основания. В отсутствие катализатора протон акцептирует вторая молекула воды, которая обладает меньшей основностью и, следовательно, является менее эффективным катализатором. [c.196]


    Пока что мы еще не пытались с помощью термодинамики предсказывать, может ли быть самопроизвольной та или иная реакция. Мы только показали, что самопроизвольный характер реакции определяется при помощи двух термодинамических понятий-энтропии и энтальпии. Прежде чем перейти к интересующим нас предсказаниям, придется ввести еще третью функцию, которая связывает между собой энтропию и энтальпию. Эта функция называется свободной энергией, или свободной энергией Гиббса, по имени американского математика и термодинамика Д. У. Гиббса (1839-1903), который впервые предложил ее использовать (см. рис. 18.6). Свободная энергия G связана с энтальпией и энтропией выражением [c.183]

    Дырочная теория жидкости также рассматривает движение молекул в ячейках. Допускается, что число ячеек значительно больше числа молекул. В связи с этим часть ячеек не заполнена молекулами. Такие ячейки называются дырками. С этим понятием связано и название самой теории. Число ячеек определяется из анализа основного термодинамического условия равновесия — минимального значения энергии Гиббса. Для расчета основных термодинамических характеристик используются, как и в теории свободного объема, понятия и уравнения статистической термодинамики. Результаты, полученные с помощью теории свободного объема и дырочной теории, во многих случаях находятся в хорошем согласии с опытными данными. Методами статистической механики удалось также получить уравнения для расчетов ряда неравновесных процессов вязкое течение жидкости, теплопроводность и др. Уравнения связывают характерные константы процессов (коэффициенты теплопроводности, вязкости) со свойствами молекул и с межмолекулярным взаимодействием. [c.232]

    На рис. 1.Ь а,б, в показаны орбитали в молекуле СО (штриховкой отмечены орбитали, занятые электронами). Аналогичные МО имеются в ионе N Частицы СО и СЫ" изоэлектронны они содержат одинаковое число электронов и отличаются лишь зарядом ядра одного из атомов (для кислорода г - 8, для азота г-7). В этих частицах МО, занятые неподеленными парами электронов, близки к р-гибридным АО. Они образуют (Г-связи с атомами металла. Свободные разрыхляющие МО в СЫ или СО дают п-связи с ( х,, (1у1 и с/.г-орбиталями атома металла. В результате лиганд весьма прочно связывается с центральным атомом. Схема образования связей показана нл рис. 1.62г. Связи металл-лиганд в комплексных цианидах и карбонилах (соединения металлов с СО) очень прочны, поскольку в таких соединениях орбиталь становится связывающей, уровень ее энергии снижается и разность энергий Д увеличивается. Это объясняет положение СЫ в спектрохимическом ряду. [c.138]

    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]


    В органическом катализе активность катализатора во многих случаях определяется не только свободной энергией, но и структурным соответствием, и вполне возможно, что катализатор с меньшим пересыщением, но с более подходящими параметрами кристаллической решетки окажется более активным. Исходя из принципа энергетического соответствия необходимо ожидать определенного оптимума по пересыщению. Чем выше свободная энергия поверхности, тем прочнее связываются с ней реагирующие вещества, что должно изменить лимитирующую стадию процесса. [c.138]

    Повышение устойчивости полимеров к фотохимической деструкции при добавлении сажи объясняют ее способностью поглощать световые волны в ультрафиолетовой и видимой областях и трансформировать световую энергию в тепловую, а также, по-видимому, с ее способностью связывать свободные радикалы. [c.291]

    Уравнения (11.18) — (И-21) являются одними из наиболее важных в термодинамике, так как они связывают изменение изобарного потенциала или свободной энергии с изменением энтальпии или внутренней энергии и энтропии. В этих уравнениях величины 1/ и Qp, очевидно, относятся к разным процессам (обратимому и необратимому). По определению (с. 28) величина (Эр характеризует необратимый изотермический процесс, в котором не совершается никакой другой работы, кроме работы против сил внешнего давления. В то же время отличающееся от нуля значение указывает на величину возможной полезной работы, которую можно получить при обратимом проведении процесса. Естественно, в обратимом процессе величина теплового эффекта уже не будет равна А//, а будет характеризовать так называемую обратимую теплоту реакции. [c.37]

    Резкое изменение энергии активации с изменением состава сплавов золота с палладием происходит в том случае, когда их парамагнитная восприимчивость у богатых палладием сплавов падает от больших величин до нуля. Коупер и Элей [10] пришли к выводу, что палладий активен, так как водород может связываться со свободными -орбитами поверхностных атомов переходных металлов и когда они оказываются заполненными при 60% -ном содержании золота, энергия активации резко возрастает. Это предположение казалось вполне приемлемым и часто цитировалось как пример электронных влияний в катализе. Однако если это и является объяснением, то довольно трудно понять, как может протекать конверсия на различных формах золота в области более низких температур от О до 200° с малой энергией активации, обнаруженной Элеем и Россингтоном. [c.275]

    Жесткое основание имеет противоположные свойства. Его донорный атом характеризуется низкой поляризуемостью, высокой электроотрицательностью, трудно окисляется, и связывается со свободными орбиталями высокой энергии. К таким основаниям относятся Р- N03-, СОз -, 804 -, РО4З-, СЮ4-, Н2О, ОН-, 02-, ЫНз и другие. [c.146]

    Существует также метод определения коэффициента активности [112], позволяющий рассчитывать количественно отклонения реального раствора от идеального. Этот метод основан на уравнении Пьеротти, которое связывает избыточную свободную энергию растворенного вещества при бесконечном разбавлении в растворителе с рядом констант. Соотношение избыточной свободной энергии и коэффициента активности имеет вид  [c.152]

    Из этого уравнения (которое связывает AZ —свободную энергию, АН — полную энергию и TAS — связанную энергию при Р = onst) следует, что при расчетах можно пользоваться только какими-либо двумя видами таблиц, а по уравнению (266) вычислять данные таблицы третьего вида. [c.148]

    Ипатьев, Левина и Карблом [135] связывали стандартную свободную энергию каждой реакции в отдельности AFi и А/ ц с избирательностью. Они предлож1или и применили к полученному ими опытному материалу формулу [c.70]

    И в этом случае подведение энергии в виде ультрафиолетового света вызывает расщепление молекулы хлор13 на атомы. Атомы хлора связывают атом водорода из молекулы углеводорода, образуя алкильный свободный радикал и хлористый водород. Алкильный радикал в свою очередь взаимодействует с молекулой хлора, образуя молекулу хлористого алкила и атом хлора. [c.140]

    Так же как и в углеводородах циклонентанового ряда, первые конфигурационные (пространственные) изомеры возникают среди дизамещенных циклогексанов. Правило, устанавливающее связь между их конфигурацией и физическими (физико-химическими) свойствами, обычно также связывается с именами Ауверса и Скита. В современной редакции оно выглядит следующим образом из двух пар эпимеров (имеются в виду только углеводороды) меньшим содержанием свободной энергии, более низкой температурой кипения (и, следовательно, меньшим временем удерживания) будет обладать эпимер, имеющий экваториальную ориентацию обоих заместителей. Для диметилзамещенных углеводородов это правило соблюдается строго, однако для углеводородов, имеющих заместители большего молекулярного веса, правило сохраняет [c.29]

    К мягким основаниям Пирсон относит молекулы и анионы, в которых содержатся электронодонорные атомы, обладающие высокой поляризуемостьм и низкой электроотрицательностью эти атомы легко окисляются и связываются атомами со свободными орбиталями с низкой энергией. В жесткн.к основа- [c.247]

    Уменьшение энтропии живых систем в ходе потребления (ассимиляции) энергонасыщенных пищевых веществ и/или энергии солнечного света сопровождается одновременным увеличением энергии Гиббса или Гельмгольца этих систем. При этом приток отрицательной энтропии извне не следует непосредственно связывать лишь с увеличением организованности живых структур и одновременной потерей статической организованности ассимилируемых пищевых веществ. Как будет видно из разд. 17.5, основной движущей силой для жизнедеятельности организмов является на самом деле динамическая диссипация энергии при деградации пищевых веществ, обеспечивающая высвобождение необходимой организму свободной энергии. [c.298]

    Свободный Н -ион имеет неожиданно большой радиус 0,208 нм. В кристаллической решетке соединений радиус Н -иО на значительно меньше ( 0,153 нм). Энергии решеток гидридов сравнимы -с энергией решеток фторидов (рис. В.18) и хлоридов. Гидрид-ион—сильный восстановитель. Стандартный потенциал пары Нз/Н составляет =—2,24 В. По отношению к воде и многим органическим соединениям гидрид-ион проявляет восстановительные свойства. Протекающую при этом реакцию сннпропорционирования Н +Н+— -Из в то же время можно рассматривать как кислотно-основное взаимодействие. При взаимодействии с водой гидрид связывает ионы Н+ и образуется щелочной раствор Н +Н20— -Нг+ОН . [c.465]

    Для рассмотрения явлений адсорбции растворенного вещества на границе раствор — газ молекулярно-кинетические пр-едставле-ния, которыми мы широко пользовались в предыдущей главе, мало пригодны.. Здесь гораздо целесообразнее рассматривать явления с термодинамических позиций и связывать адсорбцию растворенного вещества с изменением свободной энергии поверхности или ее поверхностного натяжения. [c.114]

    Наличие глубокой потенциальной ямы на потенциальной кривой слева от положительного максимума объясняет механическую прочность коагулята. Частицы на близких расстояниях прочно связываются друг с другом в результате действия ван-дер-ваальсовых сил, и образовавшиеся агрегаты приобретают некоторые свойства твердого тела. Минимум потенциальной кривой, расположенный в области отрицательных значений энергии взаимодействия, очевидно, объясняется уравновешиванием силы молекулярного притяжения силой отталкивания электронных оболочек (силы Борна) и отвечает физическому контакту обеих частиц. Это наиболее устойчивое состояние системы, в котором она обладает наименьшей свободной энергией. [c.280]

    К настояш,ему времени сложилась точка зрения, что ди- и трисахариды связываются с активным центром лизоцима в основном непродуктивно (в геометрическом отношении) и именно этим обусловлена их малая реакционная способность. Однако в качестве альтернативы можно выдвинуть то, что малое число специфических контактов субстратов низкой степени полимеризации с активным центром фермента не приводит к достаточному снижению свободной энергии активации переходного состояния реакции относительно энергетического уровня исходного состояния (E + S) или фермент-субстратного комплекса (ES) именно это является основной причиной малой реакционной способности коротких олигосахарндов. [c.195]

    Аномальное значение энергии диссоциации фтора до сих пор ( е имеет однозначного объяснения. Одна из гипотез связывает такое поведение фтора-Рг с тем, что в отличие от всех других галогенов у фтора нет свободных орбиталей во внешнем электронном слое. В молекуле хлора и других галогенов есть свободные -орбитали. Действительно, например, в слое п = 3 у хлора занят )1 орбитали ( ячейки ) с побочным квантовым числом 1=0 (2 5-элек- [c.261]

    Различают экзоэргические реакции, протекающие с уменьшением свободной энергии, и эндоэргические, сопровождающиеся ее поглощением. В биоэнергетическом отношении в живых организмах имеет значение только свободная энергия. При биохимических процессах, как правило, свободная энергия, содержащаяся в исходных веществах, полностью не используется, так как часть ее остается во вновь образованных при реакциях соединениях. Так, освобождающаяся при окислении различных органических соединений свободная энергия может большей своей частью связываться некоторыми высоко-эргическими соединениями. Эти вещества участвуют в ряде разнообразных специфических биохимических процессов, выполняя роль ((резервной и транспортной формы энергии. В высокоэргических соединениях энергия распределена не равномерно, а сконцентрирована в отдельных связях молекул. Эти связи В. А.Энгельгардтназвал макроэргическими связями. Макроэргическими связями богаты различные эфиры фосфорной кислоты полифосфаты и пирофосфаты [c.94]

    Испускаемые ядром электроны характеризуются сплошным спектром энергии от О до некоторой максимальной величины (обычно порядка 1 МэВ), вполне определенной для распада каждого данного изотопа. Непостоянство энергии электронов в процессе р--распада связывают с образованием нейтрино и антинейтрино. Частицы эти электронейтральны, не обладают массой гокоя, спин их /2, и движутся они со скоростью света. Энергия процесса Р -распада распределяется между тремя частицами электроном, остаточным ядром и антинейтрино. Участие третьей частицы и обусловливает наблюдаемый на опыте сплошной энергетический спектр электронов. С учетом существования нейтрино полагают, что в основе р--распада лежит превращение нейтрона ядра в протон, при этом образуются свободный электрон и антинейтрино  [c.398]

    Образующиеся мицеллярные эмульсии изотропны, оптически прозрачны (размер частиц 10—60 нм) и термодинамически стабильны. Самопроизвольное образование этих систем (ДО < 0) связывают [10, 29] либо с наличием отрицательного межфазного натяжения (обусловленного высоким давлением в пленке, образованной смесью ПАВ 4- добавка, на границе раздела масло — вода), либо с вкладами энтропийной составляющей, а также энергии отталкивания ДЭС. В то время как обычные эмульсии — термодинамически неустойчивые системы, кинетическая стабильность которых определяется силами отталкивания ДЭС на поверхности глобул и вандерваальсовыми силами притяжения (в соответствии с теорией ДЛФО), термодинамическая устойчивость мицеллярных эмульсий определяется свободной энергией образования двойного слоя, энтропийным эффектом (для < 20 нм) и силами отталкивания ДЭС вандерваальсовы силы притяжения играют второстепенную роль. Мицеллярные эмульсии можно рассматривать как набухшие мицеллы. [c.362]

    Такое распределение следует из правила Гунда, согласно которому электрон избегает занимать орбиталь, на которой уже имеется один электрон, до тех пор, пока другие энергетически равноценные (т. е. вырожденные) атомные орбитали, (2рж, 2ру, 2р ) остаются свободными. Очевидно, что 2рг-орби-таль в атоме углерода остается свободной. Орбиталь 25 заполняется полностью, т. е. приобретает свои два электрона до того, как начинают заполняться 2/Е7-орбптали, поскольку энергетически 25-орбйталь несколько более выгодна, чем 2/7-орбитали. Подобное распределение характерно, однако, для основного состояния свободного атома углерода, когда в образовании связей с другими атомами могут участвовать только два неспаренных электрона, находящихся на 2рх- и 2ру-орбиталях. Поэтому с первого взгляда кажется, что углерод может быть только двухвалентным. Однако такой вывод находится в противоречии с экспериментальными данными, согласно которым соединения, содержащие атом углерода, связанный только с двумя другими атомами, например СС1з (см. стр. 249), обычно неустойчивы. В подавляющем большинстве соединений углерод четырехвалентен, например в СН4. Это можно объяснить тем, что электронная пара 25 распаривается и один из этих электронов занимает свободную (вакантную) 2рг-орбиталь. В результате атом углерода переходит в состояние с повышенной энергией (возбужденное состояние) 15 25 2р 2/ 2 с7 и, имея в результате этого четыре неспаренных электрона вместо двух, обретает способность связываться уже не с двумя, а с четырьмя другими атомами или группами. Большое количество энергии, выделяющееся при образовании двух избыточных связей, значительно превышает энергию, необходимую для распаривания двух 252-электронов и перехода 2з- 2р ( 97 ккал(моль). [c.19]


Смотреть страницы где упоминается термин Связывающая энергия свободная: [c.413]    [c.413]    [c.266]    [c.266]    [c.239]    [c.18]    [c.248]    [c.54]    [c.370]    [c.152]    [c.283]    [c.25]    [c.60]   
Принципы структурной организации белков (1982) -- [ c.0 ]

Принципы структурной организации белков (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

КАО связывающая

Свободная энергия



© 2024 chem21.info Реклама на сайте