Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменники применение

    Ионообменники могут быть неорганического и органического происхождения, природными и синтетическими веществами. В настоящее время широкое применение получили синтетические органические ионообменники на основе искусственных смол эти сорбенты нерастворимы в воде и органических растворителях, обладают высокой ионообменной емкостью, селек- [c.223]


    Не останавливаясь на составе ионообменников, следует указать, что ныне их применение открывает чрезвычайно большие возможности для извлечения ценных металлов из слабоконцентрированных растворов, промывных вод, разделения металлов, присутствующих в растворе, а также очистки растворов солей от примесей. Известно, например, что некоторые из группы редкоземельных металлов можно совершенно освободить от их соседей по группе посредством ионного обмена 2. Посредством ионного [c.578]

    Этот эффект зависимости обменной емкости от pH для сильных и слабых ионообменников показан на рис. 2.11. Поскольку ионообменная емкость сильных катионитов падает до нуля при низких pH, они не могут быть использованы при рН<1. Сильные аниониты должны применяться при рН<11, слабые катиониты при рН>6, а слабые аниониты при рН<8. Из рисунка видно, что сильные ионообменники могут быть использованы в более широком диапазоне pH, чем слабые. Этим объясняется широкое применение сильных ионитов, на которых может быть разделено большее количество веществ разных классов одновременно, особенно если используется градиентное изменение pH. Сильно удерживаемые вещества, нестойкие при крайних зна чениях pH, могут разделяться на [c.34]

    Разделение ионов при помощи ионообменников. Применение органических и минеральных ионообменников для разделения ионов основано на различии прочности соединений ионов с ионообменником. При этом методе разделения ионов используют различие в таких свойствах, как заряды или объемы ионов, степень их гидратации или гидролиза, различие в способности к образованию комплексных соединений с растворителем (элюентом) и изменение этих свойств в зависимости от pH среды и природы ионообменника. [c.60]

    Четкость разделения элементов при ионном обмене можно увеличить применением комплексообразующих реагентов. Разработаны ионообменные смолы, обладающие комплексообразующими свойствами в их состав входят активные группы, способные к образованию специфичных комплексов с определяемыми ионами. Существует ряд природных ионообменников, специфичных к определенным ионам, т. е. способных поглощать только один-два иона. Усилия химиков направлены на синтез подобных высокоселективных смол, обладающих большой емкостью Интересной и важной областью применения таких смол является концентрирование редких и драгоценных металлов из морской воды. [c.111]

    Аналогично цинку с роданидом метилового фиолетового можно соосаждать и другие элементы, образующие комплексные анионы, например, висмут, медь, кадмий. На этом же принципе основан способ отделения микроколичеств цинка, кадмия, ртути, висмута и кобальта от макроколичеств никеля, магния и хрома [147]. Разделение ионов при помощи ионообменников. Применение органических и минеральных ионообменников для разделения ионов основано на различии прочности соединений ионов с ионообмен-ником. При этом методе разделения ионов используют различие в таких свойствах, как заряды или объемы ионов, степень их гидратации или гидролиза, различие в способности к образованию комплексных соединений с растворителем (элюентом) и изменение этих свойств в зависимости от pH среды и природы ионообменника. [c.81]


    Если в растворе присутствуют большие ионы некоторых органических веществ или, тем более, высокомолекулярных соединений, некоторые сорбенты при таких обстоятельствах действуют как сито, резко избирательно адсорбируя ионы меньшего размера и, таким образом, отсеивая их от больших ионов. Можно найти многочисленные примеры применения минеральных ионообменников как ионных и молекулярных сит в области неорганической и органической химии и особенно биохимии, где благодаря моле- [c.46]

    Другим гидрофильным носителем служит силикагель, не получивший широкого применения вследствие сильных адсорбционных свойств. Наконец, гидрофильными носителями могут служить ионообменники. [c.217]

    Цеолиты способны обменивать содержащуюся в них воду на другие жидкости (спирт, аммиак и т. п.). При осторожном нагревании цеолитов вода постепенно удаляется, и даже полное обезвоживание не приводит к разрушению кристаллической решетки. Особенно важно то, что в цеолитах одни катионы могут замещаться другими. На последнем свойстве основано применение цеолитов в качестве ионообменников (катионитов). Цеолиты с внедренными в них ионами -элементов являются катализаторами. [c.525]

    Цеолиты способны обменивать воду на другие вещества (МН,, спирт и т. д.), поэтому их используют в качестве так называемых молекулярных сит. Молекулярные сита поглощают вещества, молекулы которых могут войти в их полости, что находит широкое применение для разделения газообразных веществ, осушки газов и жидкостей. В цеолитах одни катионы могут замещаться другими, поэтому их используют в качестве ионообменников — катионитов. [c.225]

    Ионообменной адсорбции также свойственна определенная избирательность. При помощи ионообменников в промышленности очищают растворы от примесей солей, выделяют некоторые вещества, например редкие металлы, получают обессоленную воду, равноценную дистиллированной и т. п. Ионообменники широко применяются и в лабораторной практике. Изучается вопрос о медицинском применении этих веществ, выпускаемых промышленностью во все большем ассортименте. Ионообменники могут применяться, например, для связывания в желудочно-кишечном тракте ядовитых веществ, токсинов и т. п. [c.144]

    В случае применения свежего или регенерированного Вофатита Р выход продукта этерификации достигает 99,5% от теоретического. При применении же многократно использованного ионообменника (до 10 раз) выход снижается до 90%. [c.853]

    Сорбенты с другими привитыми полярными группами (за исключением ионообменников) выпускаются еще меньшим числом фирм или же всего одной-двумя, а их применение также достаточно редко. Это связано с тем, что какая-то особая селективность, оправдывающая их применение (рис. 2.6), отмечается довольно редко. С чем же связано то, что многие привитые полярные фазы разных типов, которые были разработаны и даже производились, не приобрели заметной популярности Ведь в ГЖХ этот путь является основным, позволяющим добиться разделения на колонке — новая фаза с особыми свойствами, дающая высокую селективность. [c.22]

    На основании этих исследований можно сделать вывод о необходимости продолжать работы по применению неорганических ионообменников для очистки вод I контура. В тех случаях, когда вода I контура имеет значительные удельные активности, а ионообменный фильтр находится в зоне высоких Полей, особое внимание [c.196]

    Часто при разделении наблюдается отчетливое влияние носителя на ионизированные вещества носитель ведет себя как ионообменник. Этот эффект отмечается как в случае порошкообразных носителей, так и при применении фильтровальной бумаги. [c.449]

    Применение ионообменных смол. Белки в растворе в зависимости от их состава могут проявлять сродство к специально приготовленным матрицам, к которым они присоединяются и откуда могут отделяться при воздействии соответствующим реактивом. Взаимодействие с веществом матрицы осуществляется через посредство очень специфичного функционального участка молекулы. Эти участки можно поместить на материал-носитель путем прививки радикалов. К таким материалам в первую очередь относятся смолы, разновидности целлюлозы и кремнеземы, которые при прививке становятся ионообменниками. В соответствии с природой прививаемого радикала различают специфические обменники ионов слабых оснований, сильных катионов, ионов слабых кислот и сильных анионов. [c.446]

    Ионообменные свойства почв были известны давно и обратили внимание исследователей на глины, цеолиты. Оказалось, что многие цеолиты, алюмосиликаты щелочных и щелочноземельных металлов являются очень активными ионообменниками. Первые синтетические цеолиты, получившие название нермутитов, в начале нашего века нашли применение в процессе умягчения воды. В тридцатых годах им на смену пришли сульфированные угли, а затем и ионообменные смолы. Началось применение ионитов в аналитической практике и одновременно количественное изучение ионного обмена, успеху которого во многом способствовали работы Самуэльсона (1939 г.). На этой почве быстро развивалась теория ионного обмена, существенный вклад в которую был сделан Б. П. Никольским (1939 г.) и его школой. [c.56]


    При обработке растворов, содержащих различные белки (с разными зарядами), может быть выгодным применение серии из двух колонок (рис. 9.45), содержащих ионообменники разного характера (например, один катионный и один анионный), с целью фракционирования белков. [c.447]

    Ионообменники применяют для сорбции микроэлементов и для поглощения матричных элементов. Их применение нередко затрудняется необходимостью иметь дело с большими объемами растворов. Однако при работе с микроколонками они достаточно широко используются во многих лабораториях для извлечения микроэлементов. [c.245]

    Схемы анализа с использованием сероводорода, основанные на различии растворимости сульфидов и тиосолей, приведены, например, в работах [1115, 1201]. Разработана [932] схема обнаружения 23 катионов ( , Ка, К, Mg, Са, 8г, Ба, Си, Ад, Еп, С<1, Hg, А1, 8п, РЬ, Аз, 8Ь, Б1, Сг, Мп, Ге, Со, N1), использующая различие в растворимости сульфатов, сульфидов, нитратов, оксидов и карбонатов и включающая применение ионообменников. Ионы [c.30]

    В цеолитах одни катионы могут замещаться другими. На этом свойстве о новано применение цеолитов в качестве ионообменников (ка-тиони Ов). Цеолиты с внедренными в них ионами ряда -элементов являются катализаторами. [c.457]

    Заканчивая этот параграф, отметим, что продукты, получаемые по рассмотренным выше реакциям, находят широкое применение. Так, продукт реакции (1.14) служит ионообменником за счет протона присоединенной сульфогруппы на основе продуктов реакций (1.15) и (1.16) готовят гемосорбенты ваиадий-содержащий силикагель (реакция (1.7)), координационно связывающий молекулы воды в соответствии с реакцией (1.18), является хорошим индикатором влажности, а хромсилика1 ель (реакция (1.8)) —катализатором окисления и т. п. С помощью реакций функциональных групп и поверхностных радикалов можно описать не только получение продуктов различного назначения, но и процессы, протекающие на поверхности при целевом их использовании. [c.29]

    Способностью к ионному обмену обладают некоторые природные соединения, например алюмосиликаты. Однако более широкое применение получили синтетические ионообменники, которыми обычно служат полимерные материалы. В качестве примера полимеров, служащих основой (матрицей) для ионитов, можно назвать сополимеры сти-)ола с дивинилбензолом и метакриловой кислоты с дивинилбензолом. онит состоит из матрицы, на которой имеется большое число функциональных групп. Последние или вводятся в мономер или в реакционную смесь при полимеризации, или прививаются к полимеру после полимеризации. Функциональные группы способны диссоциировать в растворе, при этом ионы одного знака заряда остаются на ионите, а ионы другого знака заряда переходят в раствор. В зависимости от того, какие ионы переходят в раствор, различают катиониты и аниониты. [c.348]

    Сродство ( сфоромолибдата к более тяжелым катионам щелочных металлов растет в ряду К <НЬ < Сз . Высокая избирательность солей гетерополикислот по отношению к цезию и высокая устойчивость неорганических ионообменников к ионизирующим излучениям определяют возможность их эффективного применения для извлечения цезия из сбросных растворов, полученных при переработке облученного ядерного топлива [13]. [c.45]

    Применение ионообменников в осадочной хроматографии основано на осуществлении трехстадийного процесса 1) ионный обмен, связанный с вытеснением иона-осадителя из ионита 2) реакция вытесненного иона-осадителя с хроматографируемыми ионами, приводящая к образованию труднорастворимых соединений 3) сорбционное закрепление осадка на ионите-носителе. [c.203]

    Исследование реакций комплексообразования. Определение величины заряда ионов в растворах. Определение состава и констант стойкости комплексных соединений. В литературе описаны несколько методов изучения комплексообразования в растворах с применением синтетических ионообменных сорбентов. Во всех случаях определяют поглощение исследуемого элемента М одинаковыми навесками ионообменников (катионитов и анионитов) из равных по объему порций растворов с переменной концентрацией лиганда Ь Опыты ведут при постоянной ионной силе растворов и при условии, что общее количество М значительно меньше обменной емкости взятой навески ионита. После установле-яия равновесия получают кривые поглощения, аналогичные приведенным на рис. 56. Математически обрабатывают такие кривые различными методами. Рассмотрим наиболее простые из них. [c.208]

    Иониты ионообменники) представляют собой нерастворимые высокомолекулярные соединения, содержащие способные к ионизации функциональные группы и дающие с ионами противоположного заряда нерастворимые соли. Уже давно известны неорганические иониты, применяющиеся, например, для смягчения воды. Но только с появлением синтетических органических ионитов процессы ионного обмена стали широко использовать в аналитической и препаративной химии и даже в химической технологии. В настоящей главе рассматриваются лишь те аспекты ионообменной хроматографии, которые имеют прямое отношение к лабораторной технике органической химии. Принципы ионного обмена и его. применение детально рассмотрены в обзорных статьях и книгах [1—16]. [c.546]

    Ион-парная хроматография давно находила применение в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Как самостоятельный раздел ВЭЖХ ион-парная хроматография, называвшаяся также экстракционной, парно-ионной, хроматографией с использованием ПАВ, хроматографией с жидким ионообменником, стала развиваться с середины 70-х годов. Метод занимает промежуточное положение между ионообменной хроматографией и адсорбционной, распределительной или обращенно-фазной. Недостатки ионообменных материалов, а именно невоспроизводимость от партии к партии, меньшая активность и стабильность по сравнению с другими сорбентами и небольшой выбор наполнительного материала, исключающий изменение селективности за счет сорбента, привел к некоторому ограничению применения ионообменной хроматографии. В ион-парной хроматографии большинство этих недостатков можно преодолеть. Метод ион-парной хроматографии характеризуется универсальностью и обладает преимуществом по сравнению с классической ионообменной хроматографией, в котором активные центры фиксированы. Вследствие более быстрой массопередачи в ион-парной системе хроматографическое разделение более эффективно, чем на ионообменнике с фиксированными и активными зонами. [c.74]

    Сильные катионо- и анионообменники находят применение анализе биологических жидкостей для определения ряда лекарственных препаратов, биогенных аминов, их метаболитов и др. Разработан метод ион-парной хроматографии, в котором используют динамические слои катионо- или анионоактивных агентов, обладающие свойствами ионообменников и в то же время обращенно-фазных сорбентов. Эти слои наносят из растворителя, содержащего ион-парный реагент, (обычно алкил-сульфокислоты или тетраалкиламмониевые основания), пропуская его через сорбент для обращенно-фазной хроматографии. Ион-парная обращенно-фазная хроматография является методом анализа смеси ионизирующихся и неионизирующихся веществ. [c.98]

    УВА и углеволокнистые ионообменники служат для очистки атм. воздуха, а также технол. газов и жидкостей, вьщеления из последних ценных компонентов, изготовления ср-в индивидуальной защиты органов дыхания. Широкое применение находят УВА (в частности, актилен) в медицине для очистки крови и др. биол. жидкостей, в повязках при лечении ран и ожогов, как лек. ср-во (ваулен) при отравлениях (благодаря их высокой способности сорбировать л. яды), как носители лек. и биологически активных в-в. катализаторы используют в высокотемпературных процессах неорг. и орг. синтеза, а также для окисления содержащихся В газах примесей (СО до СО5, SO2 до SO3 и др.). [c.29]

    При производстве ксилита пентозный гидролизат после ионооб-мена подщелачивается до pH 7,5 и гидрируется на никелевом катализаторе при 120°С и давлении водорода 65—100 кгс1слА. Полученный ксилит дополнительно очищается на ионообменниках, осветляется углем и упаривается под вакуумом до 75% сухого вещества. Доброкачественность сиропа по ксилиту составляет 90—98%. Далее следует процесс кристаллизации, аналогичный описанному выше для ксилозы. Получаемый по этой схеме ксилит имеет следующую характеристику [ПО] белые кристаллы, по сладости близкие к сахарозе, 26 г полностью растворяются в 50 мл воды при 20° С, температура плавления 90—94°С, содержание золы не более 0,1%, редуцирующих веществ не более 0,1%, pH водного раствора 4,5—7,5, влажность не более 0,2%. В таком виде ксилит используется при изготовлении пищевых продуктов в качестве заменителя сахарозы для людей, страдающих сахарной болезнью (диабетом), а также для инъекций в кровь вместо глкжозы. Технический ксилит находит применение наравне с глицерином и другими многоатомными спиртами в химической промышленности. [c.411]

    Применение ионообменников. Ионообменные смолы сферосил, разработанные французской фирмой Рон-Пуленк , пригодны для очистки белков водных экстрактов. В таблице 9.40 приведены характеристики полученных продуктов. [c.486]

    Разработан метод выделения натрия с использованием фронтальной динамики [2091. При пропускании воды через колонку ионообменника из-за эквивалентности обмена концентрация менее сорбируемого иона в фильтрате достигает суммарной концентрации катионов в исходной смеси, после чего эффект вытеснения проявляется в расширении зоны вытесняемого иона. Второй, более сорбируемый компонент смеси (например, натрий) начинает проявляться в фильтрате после того, как концентрация менее сорбируемого иона, после достижения суммарной концентрации смеси, начинает снижаться. Пробы для анализа следует брать на восходящей ветви выходной кривой натрия, вблизи к максимуму концентрации. В сочетании с изотопным разбавлением метод применен для определения натрия в морской воде. [c.50]

    Широкое применение для разделения элементов нашли хела-тообразующие ионообменники [178, 240, 685, 824]. Мп(И) отделяют от Gu(II), Fe(III) на монофункциональной иминодиуксусной смоле, дауэкс А-1, а также в колонке с альгиновой кислотой. На монофункциональной иминодиуксусной смоле Мп(П) также можно отделить от Со(И), Pb(II), Ni(II), Gd(II) и Zn(II). [c.141]

    Быстро действующим восстановителем является иодид-ион 13, стр. 223], так как потенциал пары Лг/Л равен +0,535 в. Время 50%-ного восстановления в растворе, содержащем 10 М Pu(IV), 0,1 М KJ и 0,4 М НС1, при комнатной температуре составляет 2 мин. Скорость восстановления в разбавленной серной кислоте, по всей вероятности, несколько меньше, чем в растворах НС и HNO3. Этот реагент нашел применение при десорбции Pu(IV), сорбированного на ионообменнике. [c.61]

    Наиболее важным свойством полифосфатов натрия, на котором основано их широкое практическое применение, является способность связывать кальций и магний, умягчая тем самым воду - . Эта способность полифосфатов объясняется тем, что они обладают свойствами ионообменников . Триполифосфат ЫабРзОю с солями жесткости образует соль СагМаРдОю, выделяющуюся в осадок при достаточной концентрации ионов Са + в растворе. Он способен связать 10—11% кальция или 6,4% магния (от своего веса). Стеклообразные фосфаты могут связывать 12—18% кальция или 2,9— 3,8% магния. [c.284]


Библиография для Ионообменники применение: [c.263]   
Смотреть страницы где упоминается термин Ионообменники применение: [c.284]    [c.1057]    [c.216]    [c.45]    [c.363]    [c.35]    [c.278]    [c.58]   
Хроматография неорганических веществ (1986) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменники



© 2025 chem21.info Реклама на сайте