Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексный стойкость

    Отмечается повышенная стойкость никельсодержащих комплексов. Это объясняется характером комплексных связей никеля в молекулах асфальтенов и смол, а также особенностями расположения атома никеля в структуре порфирина [122]. Наблюдаемая более высокая глубина удаления ванадия предположительно объясняется тем, что выступающий из плоскости ванадилпорфирина гетероатом кислорода прочно связывается с поверхностью катализатора и облегчает отрыв атома ванадия. Разложение металлсодержащих порфиринов составляет 18-28% от общего их содержания в сырье и зависит от жесткости процесса. [c.236]


    Высокой детонационной стойкостью обладают некоторые внутри-комплексные соли меди. Их эффективность близка к эффективности железоорганических антидетонаторов. Однако эти соединения оказались нестабильными при хранении и в их присутствии наблюдалось ускоренное окисление углеводородов бензина. Кроме того, внутрикомплексные соединения меди отлагаются на стенках впускного трубопровода и вызывают нарушения в процессе смесеобразования, поэтому практического применения они не получили.  [c.128]

    Многие исследователи отмечают повышенную стойкость никельсодержащих комплексов [43, 48, 49, 12]. Это объясняется характером комплексных связей никеля в молекулах асфальтенов и смол, а также особенностями расположения атома никеля в структуре порфирина. Наблюдаемая более высокая глубина удаления ванадия предположительно объясняется тем, что выступающий из плоскости ванадилпорфирина гетероатом кислорода (см. рис. 1.2) прочно связывается с поверхностью [c.56]

    Химические соединения, содержащие комплексные группы, называются комплексными, или координационными. Комплексные группы образуются в результате координации около центрального атома (иона) лигандов — нейтральных молекул, кислотных остатков. Они характеризуются определенной прочностью и в химических реакциях проявляют индивидуальные свойства. Центральный атом (ион) с координированными лигандами образует внутреннюю координационную сферу, которую при записи формулы берут в квадратные скобки, чтобы подчеркнуть ее стойкость и индивидуальность. Центром координации может быть металл или неметалл с различной степенью окисле- [c.290]

    Системная теория печей требует, чтобы рассматривалась не только химическая стойкость отдельного огнеупорного изделия, а футеровка в целом, включая связующие материалы и качество изготовления, так как они оказывают существенное влияние на химическую стойкость. Такое комплексное рассмотрение диктуется тем, что отдельное огнеупорное изделие и футеровка в целом функционируют различно. Если химическая стойкость связующего материала окажется ниже, чем у огнеупорного изделия, то это может обусловить разъедание футеровки шлаком во внутренних плоскостях, что приведет к дальнейшему разрушению последующих слоев футеровки из теплоизоляционного и облицовочного материалов и, как следствие, к разрушению металлического кожуха печи, разгерметизации рабочей камеры и выходу печи из строя. [c.92]


    Особое положение в ионообменной хроматографии занимает применение комплексообразователей — веществ, образующих с ионами анализируемой смеси или противоионами ионита комплексные соединения различной стойкости. [c.110]

    И и к е л ь не окисляется на воздухе и легко растворяется только в разбавленной азотной кислоте. Химическая стойкость никеля обусловлена его склонностью к пассивированию, связанному с образованием на поверхности металла защитной оксидной пленки.С кислородом он начинает взаимодействовать только при 500°С. И лишь в измельченном состоянии при нагревании N1 реагирует с галогенами, серой и другими неметаллами. С большинством из них он, как и многие -элементы, образует соединения переменного состава (в том числе и металлоподобные). Из соединений никеля практическое значение имеют главным образом те, в которых никель имеет степень окисления +2. Оксид N 0 и гидроксид Ы1(0Н)2 в воде не растворяются, но легко растворяются в кислотах и растворах аммиака. Взаимодействия идут с образованием комплексных ионов  [c.297]

    Оценивая коррозионную стойкость металлов, т. е. их способность не поддаваться окислению, руководствуются значениями электрохимических потенциалов (см. стр. 156). Идеально коррозионно-стойких металлов не существует. Например, весьма стойкое в обычных условиях золото легко окисляется в растворе цианида калия вследствие образования комплексных соединений. Наряду с электродными потенциалами следует учитывать образование защитной окисной пленки на металле. [c.170]

    Из уравнения (200) следует, что соотношение М " Ы" в элюате в виде их комплексов с лигандом зависит от произведений растворимости осадков, констант стойкости и состава образующихся растворимых комплексных соединений. [c.240]

    Иногда процесс протекает только по равновесию (204), минуя стадии (201) — (203). Однако при постоянных значениях pH и концентрации H L, которые создаются в определенном участке хроматографической колонки при применении буферных растворов, степень поглощения ионов металла зависит от константы стойкости Kml комплексного соединения и константы кислотной диссоциации Кн L органического комплексообразующего реагента. Связь между этими величинами наиболее удобно выразить через концентрационную константу равновесия (202) Кр.  [c.243]

    Для повышения стойкости гомогенных катализаторов, увеличения их активности и термостабильности широко используется закрепление гомогенных комплексных катализаторов на поверхности твердых неорганических или гелеобразных носителей. Аналогичный прием используется и в ферментативном катализе. [c.115]

    Трудно предположить, что в условиях комплексного легирования и модифицирования белого чугуна висмут может оказать положительное воздействие в направлении увеличения сопротивления изнашиванию и стойкости в условиях многократных ударных нагрузок. [c.71]

    Покрытия, на основе комплексной группы химически стойких материалов были широко испытаны при защите оборудования и металлоконструкций, установленных на территории химического предприятия и подвергающихся воздействию паров серной и соляной кислот. Пятислойное покрытие, состоящее из одного слоя грунтовки ХС-059, двух слоев эмали ХС-759 и двух слоев лака ХС-724, при испытании в этих условиях в течение 6 лет показало высокую стойкость. [c.84]

    Рассмотренные стали обладают примерно одинаковой коррозионной стойкостью в атмосфере и водных средах. Коррозионная стойкость снижается при наличии в составе стали неметаллических включений в виде оксидов, сульфидов, а также при наличии на поверхности прокатной окалины. Во всех случаях применения требуется защита от коррозии окраска, эмалирование, ингибиторы, металлические защитные покрытия. Наиболее эффективным способом защиты в атмосферных условиях для ответственных конструкций является горячее алюминирование или металлизация с последующей покраской. В растворах электролитов и в природных водах эффективна комплексная защита лакокрасочными покрытиями в сочетании с катодной защитой. [c.67]

    Создание конструкции с заранее заданными коррозионными свойствами, с равной стойкостью ее элементов и с определенными показателями критериев ресурса и надежности является довольно сложной, комплексной задачей. Необходимо обеспечить тесную связь всех стадий отработки конструкции проектирования, изготовления, эксплуатации и ремонта. Важное значение имеют натурные и стендовые испытания узлов, всесторонний анализ возможных отказов при эксплуатации, проведение анализа состояния конструкции при ремонтах и т. п. [c.80]

    Диффузионное насыщение стали 45 хромом, бором, ванадием, а также комплексное насыщение бором и медью, хромом и углеродом резко повышает стойкость стали к повреждению, что связано с высокой твердостью и износостойкостью диффузионных слоев. [c.155]

    Реакции, протекающие с участием комплексных соединений упомянутого выше характера, были несколько лет назад предметом подробных исследований Коха и Гильферта [26]. Последние нашли, что катализатор изомеризации (хлористый алюминий — хлористый водород) способен присоединять к ненасыщенным продуктам крекинга молекулярный водород, насыщая их таким образом. Это весьма благоприятно сказывается на стойкости самого катализатора, который в присутствии больших количеств олефинов становится неактивным. Комплекс хлористого алюминия и хлористого водорода может служить переносчиком водорода от молекулы парафина к олефину. При этом сам парафиновый углеводород становится все более ненасыщенным и, наконец, так крепко связывает хлористый алюминий, что последний становится неактивным. В присутствии водорода под давлением эта реакция тормозится или вовсе подавляется [27.  [c.522]


    Чистота двигателя leanliness) - это комплексная характеристика, включающая в себя не только моющие свойства масла, но и его стойкость к окислению, а также способность подавлять коксо- и смолообразование. Смолистые отложения практически не образуются пока в масле находятся моющие присадки. Моющие свойства масел определяются при помощи стендовых моторных испытаний. Чистота каждого типа двигателя определяется разными методами испытаний, при которых устанавливаются разные режимы работы двигателя (предельно высокая температура и частота вращения коленчатого вала, неполный прогрев двигателя в режиме стоп-старт и т.д.). Общая моющая способность определяется после разборки двигателя и оценки количества загрязнений на отдельных деталях. [c.59]

    Схема комплексного исследования этих нефтей предусматривала также и выяснение влияния химической природы нефтей на термическую стойкость их остаточной части [9]. В качестве исходного сырья были взяты остатки выше 350° С шести нефтей различной химической природы две нефти западнотуркменских месторождений (Котуртепе и Барсакельмес), две мангышлакские (Узень и Жетыбай) и две нефти бухарских месторождений (Карактай и Шуртепе) (табл. 48). По основным характеристикам нефти место- [c.159]

    В присутствии избытка МНд, например в растворах минеральных удобрений, скорость коррозии в МН4ЫОз при комнатной температуре может достигать очень высоких значений — до 50 мм/год [21—24] (рис. 6.13). Комплексное соединение, образующееся в этом случае, имеет формулу [Ре(МНз)в ](ЫОз)2 [24]. Реакция, очевидно, идет с анодным контролем так как контакт низколегированной стали с платиной (при равной площади образцов) не влияет на скорость коррозии. Структура металла влияет на коррозионную стойкость. Так, нагартованная малоуглеродистая сталь корродирует с большей скоростью, чем закаленная при повышенной температуре. Это свидетельствует, что коррозия протекает не с диффузионным контролем, а зависит от скорости образования ионов металла на аноде и, возможно, до некоторой степени от скорости деполяризации на катоде. [c.119]

    На воздухе алюминий покрывается очень прочной тончайшей (10 м) оксидной пленкой, которая несколько ослабляет металлический блеск алюминия. Благодаря оксидной пленке поверхность алюминия приобретает высокую коррозионную стойкость. Это прежде всего проявляется в индифферентности алюминия к воде и водяному пару. Вследствие образования заш,итной пленки алюминий устойчив по отношению к концентрированным азотной и серной кислотам. Эти кислоты на холоду пассивируют алюминий. Склонность к пассивированию позволяет повышать коррозионную стойкость алюминия путем обработки его поверхности сильными окислителями (например, КгСг О ) или при помощи анодного окисления. При этом толщина оксидной пленки возрастает до 3 10 м. При высоких температурах прочность защитной пленки резко снижается. Если механическим воздействием снять оксидную пленку, алюминий становится крайне реакционноспособным. Он энергично взаимодействует с водой и водными растворами кислот и щелочей, вытесняя водород и образуя комплексные катионы (аквакомплексы) или анионы (гидроксокомплексы). Координационное число алюминия равно шести, когда лигандами являются молекулы воды [А1(Н20)б] , и четырем, когда лигандами являются ионы гидроксила [А1(0Н)4]". Взаимодействие алюминия с растворами кислот протекает по уравнению реакции [c.278]

    Неполярные молекулы обладают только индуцированным дипольным моментом. Для полярных молекул сумма постоянного и индуцированного дипольных моментов называется результируюищм дипольным моментом, обозначаемым Возможны случаи, когда результируюш,ий момент одной молекулы больше, чем другой, хотя постоянный момент первой меньше, чем второй первая молекула обладает большим индуцированным моментом (это имеет значение при сравнении стойкости комплексных соединений — см. ниже). [c.117]

    Изучены указанные вопросы для процессов электроосаждения из трилонатных растворов сурьмы, сплавов 8Ь - В1, - 1п, Си - 31, Ni - В1, Со - В1, Си - N1, Си - Со, В1. Установлено, что фазовый состав электро-осажденных сплавов зависит от потенциала осаждения и химического состава сплавов присутствие в растворе протонированных трилонатных комплексных частиц и гидроксокомплексов металлов снижает качество и выход по току сплавов в нестационарных условиях электроосаждения формируются сплавы с высокой степенью дефектности, причем структурные искажения кристаллических решеток носят деформационный характер твердость и коррозионная стойкость зависят от химического состава сплава. Методом рентгеноструктурного анализа установлена структура и фазовый состав изученных гальванических покрытий. [c.22]

    Исследование реакций комплексообразования. Определение величины заряда ионов в растворах. Определение состава и констант стойкости комплексных соединений. В литературе описаны несколько методов изучения комплексообразования в растворах с применением синтетических ионообменных сорбентов. Во всех случаях определяют поглощение исследуемого элемента М одинаковыми навесками ионообменников (катионитов и анионитов) из равных по объему порций растворов с переменной концентрацией лиганда Ь Опыты ведут при постоянной ионной силе растворов и при условии, что общее количество М значительно меньше обменной емкости взятой навески ионита. После установле-яия равновесия получают кривые поглощения, аналогичные приведенным на рис. 56. Математически обрабатывают такие кривые различными методами. Рассмотрим наиболее простые из них. [c.208]

    Теория кристаллического поля позволяет объяснить и относительную стабильность комплексных соединений переходных металлов. Для объяснения воспользуемся такой характеристикой комплексных соединений, как константа устойчивости, представляющая собой обратную величину константы диссоциации комплексов типа [МЬб] + (где М — двухвалентные ионы элементов периодической системы с порядковым номером от 20 (Са) до 31 (Си)) можно было ожидать монотонного увеличения константы стойкости (как показано пунктиром на рис. 16.3), так как ионы-комплексообразовате-ли имеют одинаковые заряды 2+, а ионные радиусы монотонно уменьшаются при переходе от a + к Zn +. Экспериментально найденная кривая зависимости (см. рис. 16.3) [c.383]

    Использование различных внешнесферных катионов позволяет определить методом Мургулеску значения и других ионных рефракций. Единственным методическим. ограничением этого подхода является ограниченная величина растворимости и стойкости комплексных соединений в растворе. [c.55]

    В ультра- и метафосфатной областях систем Са0- 205-8102 и СаО-РзОз-АЬОз (5-20 мол.% или АЬОз) были определены концентрационные пределы стеклообразования и кристаллизации. Установлены особенности процесса кристатлизации кальцийфосфатных стекол в зависимости от химического состава стекла, вида каталитической добавки, валентного состояния ионов катализаторов кристаллизации. Предложен механизм кристаллизации кальцийфосфатных стекол в присутствии комплексной каталитической добавки (Т102 + 2г02). Выявлены закономерности изменения свойств стекол и стеклокристаллических материалов (химическая стойкость, поведение в искусственных физиологических средах) в зависимости от химического и фазового состава и степени кристалличности материала. [c.24]

    В условиях возрастающих объемов строительства магистральных трубопроводов и соответственно все более увеличивающейся протяженности действующих трубопроводов нет более важной задачи, чем повышение надежности трубопроводных систем. С этих позиций одно из первостепенных значений приобретает повышение эффективности противокоррозионной защиты (ПКЗ) трубопроводов. ГКНТ, Госпланом СССР, АН СССР совместно с министерствами и ведомствами разработана и утверждена целевая комплексная научно-техническая программа по защите металлов от коррозии, направленная на повышение в 2-3 раза коррозионной стойкости различных объектов, в том числе и подземных коммуникаций. Выполнение этой программы в части магистральных трубопроводов позволит в значительной мере повысить их эксплуатационную надежность. [c.120]

    Повышенная стойкость никеля по сравнению с ванадием, очевидно, обусловлена характером комплексных связей обоих металлов в молекулах асфальтенов. Лишь небольшая часть общего содержания металлов присутствует в асфальтенах в виде порфиринов остальное количество содержится в виде других металлоорганических комплексов. Однако установлено, что весь ванадий, содержащийся в кувейтской нефти, является четырехвалентным. Никель же двухвалентен. В результате этого не все валентности, например ванадия, в ванадий-пор-фириновых комплексах, насыщены в координационной плоскости он одновременно связан и с атомом кислорода (или, возможно, серы) связью, перпендикулярной к плоскостной структуре остальной части молекулы. То обстоятельство, что атом кислорода выступает из плоскости комплексного соединения, облегчает доступ металла к катализатору при посредстве вы- ступающего /-етероатома. Никель, валентность которого, на-118 [c.118]

    Легирование. Хром, никель, марганец, кремний, ванадий (в количестве до 5 %), а также комплексное легирование в пределах, не переводящих сталь в класс коррозионно-стойких, как правило увеличивают усталостную прочность и коррозионную стойкость, по при коррозионной усталости НС дают значительного эффекта, особенно при больншх базах эксплуатации Характерным примером является коррозионно-усталостная прочность стали марки 34ХНЗМ (рис. 32). Коррозионно-стойкие стали мартенситного и переходного классов имеют несколько более высокую коррозионно-уста-лостную прочность, а наилучшие результаты показывают коррозионно-стойкие стали аустенитного класса. [c.83]

    В последние годы установилось международное сотрудничество ИФХ АН СССР с коррозионными станциями стран — членов СЭВ (БНР, ВНР, Кубь , СРВ, ЧССР), а также со станциями Индии. На всех этих станциях реализуются совместные комплексные программы испытаний материалов и средств защиты от коррозии. Ныне имеется реальная возможность оценивать коррозионную стойкость материалов практически во всех климатических районах мира. [c.72]

    В результате комплексного исследования влияния легирования на стойкость сталей к растрескиванию в сероводородсодержащих электролитах предложен ряд низколегированных сталей, обладающих в д нных средах повышенной стойкостью [28]. Кроме того, предложены стали, легированные редкоземельными элементами, а также высоколегированные сплавы Ni—А1 — сплав после горячей прокатки и старения, Ni- u— Fe - сплавы типа инконель после отж-ига или холодной обработки и ряд других. Есть основание считать, что редкоземельные элементы рафинируют сталь от металлоидов (кислород, водород), вязывают мышьяк, серу и фосфор в тугоплавкие соединения и вместе с тем снижают перенапряжение вьщеления водорода на металле, препятствуя водородной хрупкости [8]. [c.120]

    Грунтовка В-АУ-0150 на уралкидной основе. Предназначается для окраски деталей, кабин, кузовов в автомобильной промышленности и сельхозмашиностроении. Выпускается двух расцветок красно-коричневая и серая. Обеспечивает высокую коррозионную стойкость комплексных покрытий при толщине слоя грунтовки 15—17 мкм. [c.87]

    Осн. св-ва М. близки к св-вам обычных комплексных нитей (см. Волокна химические, а также табл.). Для полиамидных М, характерны высокие прочность, устойчивость к истиранию и знакопеременным деформациям, прочность в узле и петле, достаточная атмосферостойкость, однако они имеют невысокий. модуль упругости, нестойки к действию щелочен и г-т, М, из полиэтилентерефталата, наряду с высокой прочностью, обладают повышенными модулем упругости и износостойкостью они более гидрофобны, чем полиамидные М., имеют высокую био- и атмосферостойкость. Полиолефиновые М. имеют высокие прочность, устойчивость к знакопеременным деформациям, гидрофоб ность, хим. стойкость, однако обладают низкими атмос феро- и износостойкостью. М, из СВХ гидрофобны, износо стойки для них характерны высокие электроизоляц. св-ва, однако сравнительно невысокие прочность и устойчивость к знакопеременным деформациям. [c.135]


Смотреть страницы где упоминается термин Комплексный стойкость: [c.262]    [c.508]    [c.28]    [c.156]    [c.217]    [c.203]    [c.250]    [c.236]    [c.53]    [c.69]    [c.61]    [c.543]    [c.19]    [c.38]    [c.591]   
Лекционные опыты и демонстрации по общей и неорганической химии (1976) -- [ c.302 ]




ПОИСК







© 2025 chem21.info Реклама на сайте