Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Томсон Кельвин закон

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, как и первый, был установлен как постулат, обоснованный опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо из следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, ио существу равноценные. [c.212]


    Закон Томсона (Кельвина) [c.35]

    Он однозначно определяется температурами теплоприемника и теплоотдатчика и не зависит от вида вещества. Используя это соотношение, как показал В. Томсон (Кельвин), можно построить температурную шкалу, не зависящую от вида какого-нибудь термометрического вещества. Она практически совпадает со шкалой, построенной на основе законов идеальных газов. [c.214]

    Повышение химического потенциала вещества в диспергированном состоянии формально связ-ано с искривлением поверхности частиц дисперсной фазы по существу же, в соответствии с выражением (I—23), лежащим в основе вывода законов Лапласа и Томсона (Кельвина), оно обусловлено возрастанием доли поверхности, а следовательно. и поверхностной энергии, приходящейся на единицу объема вещества частицы, при уменьшении ее объема. [c.36]

    В фундаменте классической термодинамики, созданной трудами Карно, Клаузиуса, Томсона (Кельвина) и других ученых, лежат два закона, или начала. Первый — это опытный закон сохранения энергии, открытый Майером в 1842 г., в формулировке Клаузиуса он записывается следующим образом  [c.405]

    Закон Томсона (Кельвина) лежит в основе такого широко распространенного явления, как капиллярная конденсация, а также процессов образования зародышей новой фазы (гл. IV) и изотермической перегонки вещества (гл. IX). [c.36]

    Явление капиллярной конденсации состоит в том, что конденсация пара в тонких капиллярных порах твердых адсорбентов происходит при давлениях меньших, чем давление пара над плоской поверхностью (при условии смачивания конденсатом поверхности адсорбента). В соответствии с законом Томсона (Кельвина), чем тоньше поры адсорбента, тем при меньшем давлении происходит конденсация. Это используется, в частности, при рекуперации (возвращение в производство) летучих растворителей в технологических процессах, а также для анализа геометрии порового пространства сорбентов и др. Связь закономерностей капиллярной конденсации со структурой порового пространства была детально изучена А. В. Киселевым с сотр. [c.36]

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, так же как и первый, был установлен как постулат, обоснованный всем опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо нз следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, по существу равноценные. Строгий вывод следствий из второго начала термодинамики связан со значительными затруднениями. Вслед за методом Карно — Клаузиуса — Томсона были разработаны два более строгих метода первый — киевским профессором Н. И. Шиллером в 1896 г. (этот метод в 1909 г. был развит Каратеодори) и второй К. А, Путиловым в 1937 г. [c.281]


    Начало развития термодинамики неравновесных процессов (или просто неравновесной термодинамики) следует отсчитывать от Рудольфа Клаузиуса, которому принадлежит по существу основное в этой области понятие некомпенсированной теплоты (1850 г.). Однако первым все же применил термодинамические соотношения к изучению неравновесных процессов Вильям Томсон (Кельвин) в 1854 г. В более позднее время развитию неравновесной термодинамике существенно способствовал Де-Донде. Его главная идея состояла в том, что можно идти дальше обычного утверждения неравенства второго закона и дать количественное определение возникновения энтропии . В 1922 г. Де-Донде связал также некомпенсированную теплоту Клаузиуса и химическое сродство. В 1931 г. Онзагер формулировал свои знаменитые соотношения взаимности , являющиеся основой изучения связей различных неравновесных процессов в так называемой линейной области. Дальнейшее развитие неравновесной термодинамики и обоснование ее формализма связано с именами Пригожина, Глансдорфа, Казимира и других. Так, в работах И. Пригожина методы неравновесной термодинамики распространены на область, где связь между потоками и вызывающими их силами уже не является линейной. [c.308]

    Из сказанного должно быть ясно, что толкование теплового явления, данное в ОТ, ничего общего не имеет и с существующими ныне представлениями. Согласно этим представлениям, теплота есть хаотическое движение микрочастиц, из которых состоят тела природы. Следовательно, сейчас в науке тепловому явлению отказывают в самостоятельности, его принято сводить к кинетическому. Этот подход сохранился еще с тех пор, когда весь мир пытались объяснить с помощью законов механики, в этом приняли участие Максвелл, Томсон-Кельвин, Больцман, Клаузиус, Гиббс, М. Смолуховский, Планк и другие ученые. [c.271]

    ЖИДКОСТИ И пара, показанная на рис. 30, а [21, с. 335]. В смачиваемом жидкостью капилляре циркуляция должна иметь обратное направление. Оба вида циркуляции суть необходимые следствия уравнения Томсона-Кельвина, которое выведено из второго закона термодинамики. С другой стороны, подобная циркуляция категорически запрещена самим вторым законом — это первое противоречие в существующей теории фазовых превращений, которое достойно быть упомянутым. Второе, еще более разительное противоречие заключается в следующем. [c.452]

    Как видим, опыты с реальными испарительными вечными двигателями второго рода в точности подтверждают все высказанные выше теоретические прогнозы ОТ об ошибочности теории фазовых превращений Томсона-Кельвина, о нарушениях второго закона термодинамики Клаузиуса и т. д. [c.471]

    На основе исследований Р. Майера (1842), Д. Джоуля (1843) и Г. Гельмгольца (1847 г.) была установлена эквивалентность теплоты и различных видов работ, что позволило сформулировать 1-й закон термодинамики. Этому же способствовал закон Г. И. Гесса о тепловых эффектах химических процессов (1738 г.). В 1850 г. Р. Клаузиус обосновал существование внутренней энергии и независимо от В. Томсона (1848 г.) сформулировал 2-ой закон термодинамики. В. Томсон (лорд Кельвин) вводит понятие абсолютной температуры, а Клаузиус на основе [c.14]

    На рис. (И 1.4) схематически представлено действие воображаемого устройства, которое условно назовем анти-Клаузиус . Почти одновременно появилась формулировка второго закона, принадлежащая Кельвину (В. Томсону) невозможно сконструировать машину, которая, действуя посредством кругового процесса, будет только извлекать теплоту из резервуара (теплоисточника) и превращать его в эквивалентное количество работы. [c.68]

    Впоследствии У. Томсон (1824-1907) выдвинул предположение,, что температура — 273°С представляет собой абсолютный минимум температур, ниже которого невозможно опуститься. В настоящее время ученые пользуются абсолютной шкалой температур Кельвина, в которой О К = = — 273Д5 С, а О С = 273,15 К . В этой шкале закон Гей-Люссака принимает вид [c.124]

    Временно появилась формулировка второго закона, принадлежащая Кельвину (В. Томсону) невозможно сконструировать машину, которая, действуя посредством кругового процесса, будет только извлекать теплоту из резервуара теплоисточника) и превращать его в эквивалентное количество работы. [c.78]

    Второе начало термодинамики. Направление естественных процессов. Второе начало термодинамики является результатом обобщения большого числа наблюдений н представляет собой один из фундаментальных законов природы. В формулировке, предложенной М. Планком и Кельвином (В. Томсон), второе начало утверждает, что невозможно построить периодически действующую машину, вся деятельность которой сводилась бы к поднятию некоторого груза и соответствующему охлаждению теплового резервуара. Р. Клаузиус предложил другую формулировку переход теплоты от холодного тела к более теплому не может происходить без компенсации. Компенсация означает, что для переноса теплоты от холодного тела к горячему в циклическом процессе нужно дополнительно затратить некоторую работу, переходящую в конечном счете в теплоту и поглощаемую нагретым телом. Если процесс нециклический, то компенсация означает изменение термодинамического состояния рабочего тела. Так, например, газ может производить работу расширения за счет поглощения теплоты, и в квазистатическом процессе вся теплота превратится в работу. Однако термодинамическое состояние газа в конце процесса будет отличаться от исходного. [c.38]


    Нельзя не отметить здесь, что именем Томсона (лорда Кельвина) называют даже не один, а несколько эффектов Джоуль немного отстал от него, но все же известны закон Джоуля-Ленца, цикл Джоуля... А единица энергии - джоуль шкала Кельвина  [c.61]

    Исторически Т. возникла как учение о взаимопревращениях теплоты и механич. работы (механич. теория тепла). Толчком к созданию Т. послужило развитие теплотехники и, в частности, изобретенне паровой машины в конце 18 в. Однако значительную роль в создании Т. сыграли многие более ранние открытия в естествознании, в т. ч. изобретение термометра (Галилей, 1592), создание первых температурных шкал (Бойль, 1695, Цельсий, 1742), введение понятий о теплоемкости и так наз. скрытых теплотах — теплоте плавления и теплоте испарения (Блек, 1760—62), и, наконец, установление газовых законов. Непосредственно к открытию первого закона Т. привели опыты Румфорда (1798), к-рый наблюдал выделение большого количества теплоты нри сверлении пушечного ствола, и гл. обр. исследования Майера (1841—42) и Джоуля (1843) по установлению принципа эквивалентности между работой и теплотой и измерению механич. эквивалента теплоты. Основой второго закона Т., сформулированного Клаузиусом (1850) и Томсоном (Кельвином) (1851), послужил труд Карно (1823) Размышления о движущей силе огия и о машинах, способных развивать эту силу , в к-ром впервые был дан анализ работы идеальной тепловой машины (см. Карно цикл). Т. обр., Т. как наука сформировалась в середине 19 в. В последующем важнейшими этапами в развитии Т. явились создание общей теории термодинамич. равновесия (Гиббс, 1875—78) и открытие третьего закона Т. (Нернст, 1906). Параллельно расширялись области применения термоди-намич. законов в различных областях науки и техники. [c.47]

    Понятие необратимости было введено в термодинамику Клаузиусом (1850), к-рый установил, что в адиабатически изолировашюй системе необратимые процессы протекают с возрастанием энтропии (см. Второй закон термодинамики). Впервые термодинамич. рассмотрение необратимых процессов было проведено Томсоном (Кельвином) (1854) при исследовании тер-моэлектрич. явлений. Однако как самостоятельная дисциплина Т. п. п. возникла только в 40-х гг. 20 в. (Мейкспер, Пригожин), и она находится в настоящее время в стадии интенсивного развития. [c.48]

    Дальнейшее развитие термодинамическая наука получила в работах немецкого физика Клаузиса (1850 г.) и английского физика Томсона (Кельвина) (1854 г.) Ими были сформулированы постулаты, которые и являются формулировками второго закона термодинамики. Постулат Клаузиуса звучит так Теплота не может переходить от холодного тела к более нагретому сама собой, даровым процессом (без компенсации), а постулат (аксиома) Томсона (Кельвина) — Невозможно при помощи неодушевленного материального двигателя получить от какой-либо массы вещества механическую работу путем охлаждения ее ниже самого холодного из окружающих предметов. [c.58]

    Следствием установленных С. Карно, Р. Клаузиуса и Томсона (Кельвина) положений второго закона термодинамики явилась еще одна его формулировка применительно к тепловым машинам невозможно осуществить perpetuan mobile второго рода, или другими словами нельзя осуществить такой двигатель, все действие которого сводилось бы к превращению тепла, подводимого к какому-нибудь телу, в работу без того, чтобы часть его передавалась другим телам. [c.58]

    В виде оформленной научной системы, исходящей из работ Карно и закона сохранения и превращения энергии, термодинамика появилась в 50-х годах ХТХ в. в трудах Клаузиуса и Томсона (Кельвина), давших современшле формулировки второго начала термодинамики и введших важнейшие понятия энтропии и абсолютной температуры. Основным методом исследования термодинамики XIX в. был метод круговых процессов. [c.11]

    Формулировка 2-го закона термодинамики в 1851 году была предложена лордом Кельвиным (В. Томсоном) в таком виде  [c.86]

    В более позднее время, когда от теории теплорода пришлось окончательно отказаться, возникла необходимость переосмысливания представлений Карно-Клапейрона. Это было сделано Р. Клаузиусом (1850) и Кельвиным (В. Томсон) (1851), Соответственно известны две формулировки второго закона, которые называются классическими. [c.68]

    В линейном приближении, справедливом при малых амплитудах, любые колебания являются гармоническими и все величины меняются со временем по закону синуса. Нелинейные колебания могут иметь самую различную форму, но особенно важны два характерных предельных случая. В одном из них форма колебательной кривой и при больших амплитудах остается близкой к синусоидальной. Нелинейность дифференциальных уравнений в таких системах определяет только предельную амплитуду автоколебаний, но мало влияет на форму колебательной кривой. Даже и частота обычно близка к частоте, вычисленной по линейной теории. Автоколебания такого рода называют квазигармониче-скими, или томсоновскими по имени Уильяма Томсона (лорда Кельвина), который изучил именно этот тип колебаний для электрических цепей. [c.437]

    По интенсивности молекулярного взаимодействия между фазами на их поверхности раздела Д. с. ра.з-деляются на лиофильные и лиофобные. Л и о ф о б-н ы е Д. с., где это взаимодействие является слабым вследствие большой разности полярностей образующих их веществ, обладают большим избытком свободной энергии на единицу площади поверхностного слоя на границе между фазами (высоким межфазным поверхностным натяжением) и, следовательно, являются термодинамически неустойчивыми. Они самопроизвольно коагулируют или коалесцируют, в них происходит рост мелких частиц (капелек) вследствие изотермич. перегонки вещества дисперсной фазы от мелких частиц к более крупным, т. к. более мелкие частицы, в соответствии с законом Кельвина—Томсона, обладают большой растворимостью (большим давлением насыщенного пара). Лиофильные Д. с, характеризуются интенсивным молекулярным взаимодействием меяаду фазами, значительной (но не безграничной) взаимной растворимостью образующих эти фазы веществ вследствие небольшого различия в их молекулярной природе (полярности). В лиофильиых Д. с. уд. свободная поверхностная энергия на границе фаз очень мала, хотя и не равна нулю. Лио-фильные Д. с. образуются самопроизвольно в виде двухфазных, предельно высокодисперсных систем — коллоидных р-ров. К таким лиофильным Д. с. относятся эмульсии, образующиеся вблизи критич. темп-ры растворения, когда имеет место неограниченное смешение фаз, или при любой темп-ре в присутствии больших. количеств поверхностно-активных веществ. Таковы, напр., растворимые масла или эмульсолы — минеральные масла с большим количеством коллоидно-растворенных поверхностно-активных веществ — мыл карбоновых к-т или сульфокислот с нек-рым избытком соответствующей органич. к-ты такие масла самопроизвольно эмульгируются в воде или в воднощелочной среде с образованием коллоидных р-ров [c.576]

    Над развитием классической термодинамики работали такие ученые, как Карно, Майер, Джоуль и Томсон (лорд Кельвин), однако большинство химиков трудилось в то время в области органической химии, и казалось, что эти две ветви химической науки никогда не пересекутся. Тем не менее уже в 1870 г. А. Горстман впервые применил термодинамические законы при изучении естественной диссоциации газов. Исходя из закона изменения энтропии, он смог вывести закон действующих масс. [c.223]

    Некоторые формы энергии в определенных условиях не могут быть использованы для работы. Согласно второму закону термодинамики, который, развивая учение гениального Сади Карно, сформулировали Уильям Томсон и Клаузиус, а позднее лорд Кельвин, невозможно такое устройство, которое в одном цикле своей работы только потребляло бы теплоту и выполняло эквивалентное количество работы. Другая хорошо известная формулировка второго закона термодинамики гласит, что в изолированной системе энтропия не может уменьшаться. Концепцию энтропии в термодинамике установил Клаузиус. Позже Больцман определил энтропию как меру беспорядка на молекулярном уровне. Хорошо известное уравнение Больцмана, высеченное на его надгроб- [c.11]


Смотреть страницы где упоминается термин Томсон Кельвин закон: [c.43]    [c.5]    [c.12]    [c.450]    [c.83]    [c.9]    [c.78]    [c.48]   
Коллоидная химия 1982 (1982) -- [ c.35 , c.42 , c.267 , c.274 ]




ПОИСК





Смотрите так же термины и статьи:

Кельвина

Кельвина закон

Томсон

Томсон закон

Томсона-Кельвина

Томсонит



© 2025 chem21.info Реклама на сайте