Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферми уровень энергия

    В заполненной зоне 8г<[х и большинство уровней заполнены электронами. За счет переходов электронов на возбужденные уровни, где 8г>М, часть уровней в заполненной зоне может оказаться свободной. Для описания системы в этих случаях вводится понятие дырки как уровня, который заполнен при 7 =0, но при 7 >0 оказался вакантным. Функция ц,(Г) для любого статистического распределения как классического (1Х.7), так и квантового (1Х.4) имеет одинаковый смысл — это удельная свободная энергия, т. е. химический потенциал. В классической статистике р,(Г) вычисляют, исходя из (1Х.7), но величина л не имеет простого истолкования. Для распределения Ферми химическому потенциалу согласно (1Х.6) сопоставляется некоторый уровень энергии д.=еь для которого по определению / — - . Для электронов уровень химического [c.139]


    Число свободных электронов и дырок в полупроводнике может быть найдено с использованием статистики Ферми — Дирака. Равновесные концентрации свободных носителей заряда зависят от положения уровня Ферми. Уровень Ферми для металлов, как известно, равен энергии верхнего заполненного уровня при абсолютном нуле. С позиций статистической термодинамики уровень Ферми — это парциальная мольная свободная энергия, или, другими словами, химический потенциал электронов. При условии, что эффективные массы электронов (гПп) и дырки (гпр) в кристалле равны, при Т — О уровень Ферми в полупроводнике с собственной проводимостью проходит точно по середине запрещенной зоны. Обычно Шр > т , тогда уровень Ферми в полупроводнике с собственной проводимостью расположен ближе к зоне проводимости и при повыщении температуры смещается вверх. Положение уровня Ферми в полупроводниках с примесной проводимостью зависит от концентрации примеси расчет этой величины сложен. [c.457]

    В случае полупроводников работой выхода называют наименьшую энергию, которую надо затратить для удаления электрона из полупроводника в вакуум. Уровень энергии, равный электрохимическому потенциалу, обычно называют уровнем Ферми полупроводника (см. гл. XI, 8). Ниже будет показано, что уровень Ферми играет большое значение в объяснении поведения полупроводников как катализаторов (см. гл. XI, 18, 19). Поэтому нахождение работы выхода электрона для полупроводников представляет немалый интерес. Однако обычно определяют не работу выхода электрона, а контактную разность потенциалов, которая равна разности работ выхода исследуемого полупроводника и электрода сравнения. [c.484]

    В результате выхода электронов в вакуум у поверхности раздела возникает двойной слой, в котором сосредоточен поверхностный потенциал (рис. 3, б) потенциальная энергия электронов на дне потенциального ящика изменяется при этом от и до и, а уровень Ферми, от которого отсчитывается работа выхода электрона и к которому относится реальный потенциал электрона [c.25]

    Поскольку составной частью прибора РФС является источник рентгеновского излучения, который ионизует образец, этим методом можно определять энергии связывания как валентных электронов, так и электронов оболочки. Обычно используют рентгеновское излучение Ка Mg и А1 с энергией соответственно 1253,6 и 1486,6 эВ. Методом РФС исследовали твердые вещества, газы, жидкости, растворы и замороженные растворы. В случае твердых веществ и замороженных растворов рассчитанные энергии связывания электронов относят к энергии уровня Ферми твердого вещества. Уровень Ферми соответствует высшему заполненному уровню электронного слоя структуры твердого вещества при О К. Уравнение сохранения энергии (16.23) преобразуется к виду [c.334]


    Больцмана, основанной на максвелловском распределении частиц в газе по скоростям, использовать статистику Ферми, учитывающую принцип Паули. Тогда при температуре абсолютного нуля электронный газ обладает некоторой энергией, так как все электроны должны обладать различной энергией, т. е. только один электрон может иметь энергию, равную нулю. На рис. А.60 показано распределение энергии N электронов в объеме 1 см для трех значений температуры. Верхний энергетический уровень, занятый электронами при абсолютном нуле тем- [c.139]

    Расстояние уровня Ферми от зоны проводимости е входит в качестве слагаемого в энергию активации реакции, определяя таким образом, при прочих равных условиях, скорость реакции или каталитическую активность полупроводника по отношению к данной реакции. Уровень Ферми выступает как регулятор не только каталитической, но и адсорбционной способности поверхности полупроводника. [c.166]

    Для полупроводников Волькенштейн [268] показал, что уровень Ферми входит в качестве слагаемого (со знаком -f или —) в энергию активации реакции, определяя скорость. [c.176]

    При суммировании в (92.3) каждое допустимое г-е микросостояние считается отдельно. Однако эти допустимые -е состояния, по которым производится суммирование в (92.3), зависят от статистики, которой подчиняются частицы системы. Множества допустимых состояний в статистике Бозе — Эйнштейна или статистике Ферми — Дирака будут более узкими, чем в полной статистике (см. 5 и 88), естественно, что при вычислении I во всех трех статистиках получатся существенно разные результаты. Если уровни энергии вырождены, при суммировании в (92.3) появятся одинаковые слагаемые, причем, если уровень энергии Еп вырожден 2 -кратно, появятся одинаковых слагаемых вида Поэтому выражение (92.3) можно записать в виде [c.296]

    Fermi те. т. уровень Ферми, граничная энергия Ферми [c.205]

    Однако между границами раздела металл—электролит и металл—вакуум есть очень существенное различие на первой из них действует дополнительная переменная — электродный потенциал. При его изменении меняется и работа выхода, поэтому последнюю следует относить всегда к какому-либо определенному потенциалу. Но, задавая потенциал электрода, мы однозначно определяем начальный уровень энергии электрона. В самом деле (рис. 4.4), металлы, находящиеся при одинаковом электродном потенциале (т. е. в равновесии между собой), имеют одинаковый уровень Ферми. Конечный же уровень энергии электрона в растворе, естественно, не зависит от природы металла. Специфика различных металлов проявляется лишь в высоте и форме потенциального барьера на границе раздела, т. е. в области б (см. 2.1). Но как раз свойства барьера в условиях применимости порогового приближения (А. 6) оказываются несущественными для энергетики фотоэмиссии, которая определяется только разницей начального и конечного состояний электрона, но не зависит от конкретного хода потенциала на расстояниях, малых по сравнению с де Бройлевской длиной волны электрона. Поэтому и порог фотоэмиссии в электролит не должен зависеть от природы металла [c.71]

    Анодный сдвиг потенциала в поверхностном слое металла и пассивность последнего могут быть обусловлены активированной адсорбцией (хемосорбцией) пассивирующих частиц, в первую очередь пассивирующих анионов, в особенности однозарядного атомного иона кислорода 0 (анион радикала ОН, образующегося из НаО или ОН при анодной поляризации). Адсорбция ионов кислорода уменьшает свободную энергикэ поверхностных ионов металла за счет вытеснения эквивалентного количества свободных поверхностных электронов металла, т. е. создает пассива-ционный барьер. Поскольку поверхностный электронный газ вырожден, вытесняются электроны, находящиеся на самых высоких электронных уровнях, и при этом снижается поверхностный уровень Ферми металла. Изменение свободной энергии поверхности при полном ее покрытии адсорбированным монослоем составляет 3,8-10 эрг на один электрон, что соответствует 2,37 эВ, или 54,6 ккал/г-экв. [c.311]

    Уобм+Уэл (рис. VII.21), следует иметь в виду, что на каждом энергетическом уровне согласно принципу Паули могут находиться не более двух электронов (с квантовыми спиновыми числами - -72 и — /а), поэтому электроны будут заполнять уровни со все возрастающей кинетической энергией. Самый высокий заполненный энергетический уровень при Т=0 К называется уровнем Ферми (рис. УП.21). Кинетическая энергия на уровне Ферми ер рассчитывается по формуле Зоммерфельда  [c.190]

    Уровень Ферми, по определению, есть химический потенциал электронов в твердом теле. Для металлов в то же время это энергия наиболее высокого электронного уровня, занятого при Г = 0. В случае полупроводников и изоляторов (см. 6) уровень Ферми лежит внутри зоны разрыва, и равенство (VIII.46) определяет значение Е/ неодиазначно. [c.187]

    Энергия Ферми или уровень Ферми — это максимальная энергия при Т — О, достигаемая при таком распредбглении электронов (рис. 50, а)  [c.117]


    Таким образом, если внутри объема металла локальные деформационные изменения химического потенциала электронов аннулируются путем перераспределения электронной плотности за счет соседних больших объемов с возникновением локальных потенциалов деформации, то в тонком поверхностном слое в окрестности дислокационных скоплений эти изменения компенсируются эквивалентным из-1 менением энергии внешних электронов френкелевского двойного слоя, в резуль- тате чего восстанавливается уровень Ферми, но изменяется работа выхода электрона и, следовательно, сдвигается нулевая точка металла в сторону отрицатель- ных значений на величину потенциала деформации с образованием внутреннего двойного слоя в металле. [c.102]

    Заполнение разрешенных зон электронами в Т. т. происходит последовательно в порядке возрастания энергетич. уровней в зонах. Согласно принципу Паули для Т. т., содержащего N атомов, в каждой энергетич. зоне могут находиться 2N электронов. Вероятность заполнения уровня с энергией Е определяется соотношением Ферми-Дирака /= 1/ 1 + ехр [( — p)/f 7 , где f -константа Больцмана, р-уровень Ферми-энергетич. уровень, вероятность заполнения к-рого при Т 7 О К равна 0,5 (м. б. интерпретирован как хим. потенциал электрона). Изоэнергетич. пов-сть, соответствующая Ер, наз. Ферми-пов-стью. В зависимости от числа валентных электронов верхняя из заполненных зон (в а-лентная зона) м.б. занята полностью или частично. Степень заполнения валентной зоны электронами играет важную роль в формировании электрич. св-в Т.т., т.к. электроны полностью заполненной зоны не переносят ток. [c.502]

    С использованием низкоэнергетического возбуждающего источника света и сферического анализатора энергии электронов в задерживающем поле измерены УФ-фотоэлектронные спектры пленок Сьо толщиной 20 нм, напыленных в вакууме на медную подложку при комнатной температуре. Из полученных спектров определены пороговая энергия ионизации 1=6,17 эВ и работа выхода р=4,85 эВ, которая выше, чем в алмазе (4,5) и фафите (4,7 эВ), Получены оценки энергий поляризации катионов и анионов Сьо и элекфонного сродства Сбо в-твердой фазе, которые обсуждены с учетом энергетической релаксации молекул Сбо в конденсированном состоянии. Предложена энергетическая диаграмма твердого Сбо, показывающая, что уровень Ферми расположен вблизи дна зоны проводимости и, следовательно, кристаллический Сбо является полупроводником п-типа. Из физики твердого тела извe тнo что две другие аллотропные формы - графит и алмаз - являются соответственно металлом и диэлектриком. Фазой с металлическими свойствами (металлом) называется фаза, в которой либо не все квантовые состояния валентной зоны заняты электронами, либо последняя перекрывается зоной проводимости. При [c.130]

    Резонанс Ферми. В применении к многоатомным молекулам нет строгого и надежного правила, касающегося интенсивности комбинационных полос и полос обертонов. Обычно обертон слабее своей основной полосы в 10—100 раз, но основные полосы имеют столь широкое распределение по интенсивностям, что обертон одной сильной основной полосы может быть более интенсивным, чем другая слабая основная полоса. В особых условиях обертон или комбинационная полоса становятся ненормально интенсивными. Это происходит тогда, когда энергия, скажем, обертона, случайно совпадает с энергией другого основного колебания. Тогда наблюдается явление резонанса, как при колебании связанных маятников. По классическим представлениям, энергияшереходит от основной частоты к обертону и обратно. С квантовой точки зрения, резонанс раздвигает уровни и делает их природу смешанной, так что каждый уровень становится частично уровнем основного и частично обертонного перехода. Таким образом, резонанс приводит к появлению пары переходов близкой интенсивности, причем каждый из переходов имеет в значительной степени характер основного. [c.50]

    Первые исследования по получению горючего газа из органических отходов начали проводить еще в конце 19 в. в Великобритании, а затем в Германии и Франции. На внутрифермских установках получали биогаз, отличающийся низкой теплотворной способностью и используемый преимущественно для отопления фермы и жилища, иногда как топливо для тракторов и машин. Однако в целом низкий технический уровень по сути кустарных установок, наличие на мировом рынке достаточного предложения природного топлива обусловили неконкурент-ность биогаэа вплоть до 60-х гг. 20 в. Его себестоимость была в 3-6 раз более высокой, чем традиционных источников энергии (электричество, нефтепродукты, природный газ и т.п.). [c.326]

    В то же время, если энергия валентных состояний адатома находится за пределами валентной зоны металла, виртуальные связывающие состояния образоваться не могут. Если атомный энергетический уровень расположен значительно ниже уровня Ферми, то в принципе возможен такой переход электрона с уровня Ферми и образование адиона, при котором кулоновское отталкизаике электронов в ионе не повышает энергию ионного состояния (после учета взаимодействия между ионом и его изображением в металле) настолько, чтобы связывание стало невозможным. Однако атомный энергетический уровень, по-видимому, редко располагается настолько низко, чтобы имела место чисто ионная адсорбция. Более вероятным представляется промежуточный вариант электроны не локализуются на адатоме, а распределяются между ним и одним или несколькихми поверхностными атомами металла с образованием квазинор-мальной ковалентной связи. Вполне допустимо участие в этом связывании металлических валентных состояний у верхней границы валентной зоны, где их плотность (для переходных металлов максимальна. [c.18]


Смотреть страницы где упоминается термин Ферми уровень энергия : [c.301]    [c.252]    [c.255]    [c.56]    [c.294]    [c.290]    [c.22]    [c.294]    [c.526]    [c.371]    [c.174]    [c.178]    [c.187]    [c.161]    [c.274]    [c.167]    [c.170]    [c.235]    [c.735]    [c.64]    [c.136]    [c.174]    [c.107]    [c.13]   
Введение в физическую химию кристаллофосфоров (1971) -- [ c.134 , c.144 , c.203 , c.205 , c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Уровень Ферми

Ферми

Ферми энергия

Фермий

Фермы



© 2025 chem21.info Реклама на сайте