Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионы-противоионы

    Поверхность агрегата может заряжаться благодаря избирательной адсорбции ионов из дисперсионной среды или диссоциации молекул в поверхностном слое агрегата. В соответствии с правилом Пескова — Фаянса адсорбируются преимущественно ионы, входящие в состав агрегата, либо специфически взаимодействующие с ним. Ионы, сообщающие агрегату поверхностный заряд, называются потенциалопределяющими. Заряженный агрегат составляет ядро мицеллы. При данном методе получения золя гидроксида железа ядро [Ре(ОН)з] -тРе + имеет положительный поверхностный заряд за счет адсорбции иоиов Ре + из среды (т — число адсорбированных ионов). Заряд ядра компенсируется эквивалентным зарядом противоположно заряженных ионов— противоионов, расположенных в объеме среды. Противоионы, находящиеся непосредственно у поверхности ядра (на расстояниях, близких к диаметрам ионов), помимо электростатических сил испытывают силы адсорбционного притяжения поверхности. Поэтому они особо прочно связаны с ядром мицеллы и носят название противоионов адсорбционного слоя (их число т — х). Остальные противоионы составляют диффузно построенную ионную оболочку и называются противоионами диффузного слоя (их число соответствует. г). [c.163]


    Явления коагуляции и пептизации связаны с разрушением и образованием двойного электрического слоя (и с гидратацией коллоидных частиц). Двойной электрический слон возникает на поверхности раздела любых фаз, в частности дисперсная частица— раствор, и наиболее четко он обнаруживается при условии ионной (или металлической) структуры вещества дисперсной фазы и электролитной природы дисперсионной среды. Этот слой состоит из потенциалопределяющих ионов, фиксированных на поверхности твердой фазы (дисперсной частицы), и противоположно заряженных ионов — противоионов, находящихся в жидкой фазе. Вследствие наличия двойного электрического слоя между твердой и жидкой фазами возникает разность потенциалов — поверхностный потенциал <р (рис. 3.31). [c.148]

    Электрические свойства дисперсных систем объясняют особенностью их строения, заключающейся в образовании мицелл (рис. VI.8). В центре мицеллы находится кристаллическое тело /, названное по предложению Пескова агрегатом. На нем, согласно правилу Панета—Фаянса (см. разд. 11.42), адсорбируются ноны 2, способные достраивать его кристаллическую решетку. Эти ионы сообщают агрегату электрический заряд и называются потен-циалопределяющими. В результате образуется ядро мицеллы, несущее электрический заряд, равный сумме электрических зарядов адсорбировавшихся на агрегате потенциалопределяющих ионов. Ядро создает вокруг себя электрическое поле, под действием которого к нему из раствора притягиваются противоионы, образующие вокруг ядра диффузионный слой 4 и частично входящие в состав адсорбционного слоя 3. Ядро совместно с адсорбционным слоем противоионов называется коллоидной частицей. Электрический заряд последней равен алгебраической сумме электрических зарядов потенциалопределяющих ионов и ионов адсорбционного слоя. Так возникает на частице заряд, определяющий -потенциал (дзета-потенциал) системы. Знак его соответствует знаку электрических зарядов потенциалопределяющих ионов. Противоионы диффузионного слоя мицеллы, относительно свободно [c.278]

    Дайте определения терминов потенциалопределяющие ионы, противоионы, адсорбционный слой, диффузный слой, коллоидная частица, мицелла. [c.61]

    Исходя из этих положений, выведем уравнение, связывающее -потенциал со скоростью электрофореза или электроосмотического переноса. Для этого представим себе у твердой поверхности двойной электрический слой, находящийся под действием разности электрических потенциалов, приложенной тангенциально к межфазной границе. Такой слой изображен на рис. VH, 19а. Находящиеся в жидкости ионы (противоионы) под влиянием внешнего электрического поля стремятся передвинуться вправо к полюсу, несущему противоположный заряд (в данном случае к катоду). Понятно, что вблизи твердой поверхности вместе с ионами стремится передвинуться вся жидкость, в которой находятся эти ионы. Наоборот, под влиянием этого же поля твердая поверхность с закрепленными на ней ионами (потенциалопределяющими ио- [c.198]


    Ионообменная очистка основана на способности ионообменных смол (ионитов) удерживать те загрязнения, которые в растворенном состоянии диссоциируют на ионы. Иониты получают путем полимеризации и поликонденсации органических веществ они представляют собой твердые гигроскопичные гели, не растворимые в воде и углеводородах. В высокомолекулярной пространственной решетке ионита закреплены фиксированные ионы. Заряды этих ионов компенсируются зарядами противоположного знака, принадлежащими подвижным ионам (противоионам), расположенным в ячейках решетки и способным к обмену с ионами раствора электролита. Иониты, содержащие активные кислотные группы и подвижные катионы, способные к обмену, называются катионитами, а иониты с активными основными группами и подвижными анионами — анионитами. [c.125]

    На образующихся микрокристаллах золота адсорбируются ионы аурата, являющиеся потенциалобразующими ионами. Противоионами служат ионы К" ". [c.412]

    Синтетические ионообменные смолы отличаются как по структуре углеводородного скелета — матрицы , — образованного макромолекулами, так и по типу ионогенных групп, присоединенных к матрице и определяющих обменные свойства смолы либо как катионита, либо как анионита. Если матрица несет отрицательный заряд, обусловленный фиксированными на ней анионами, и замещаемые ионы — противоионы — заряжены положительно (например, водородные ионы или катионы металлов), смола является катионитом. Если матрица заряжена положительно и подвижные противоионы несут отрицательный заряд, смола является анионитом. [c.52]

    Для любого типа кислотной и основной ионогенной группы характерна определенная энергия связи между фиксированным ионом и различными противоионами. Поэтому для каждого ионита можно установить определенную последовательность ионов (противоионов) по возрастанию энергии связи, в которой последующий ион, в условиях равной концентрации, может вытеснять предыдущий. Для большинства ионитов установлены подобные ряды, характеризующие относительную сорбируемость той или другой пары ионов. Ионитовые смолы, обладающие слабокислотными или слабоосновными группами, отличаются большей избирательностью в ионообменных процессах. [c.59]

    Выбор метода определения обменной емкости в статических или в динамических условиях зависит от природы ионита, условий опыта (pH, состав раствора и др.). Наиболее полную качественную характеристику ионогенных групп, присутствующих в ионите, дает метод потенциометрического титрования в статических условиях определения обменной емкости [44]. Для сильнокислотных и сильноосновных ионитов рабочая емкость практически всегда совпадает с полной обменной емкостью, равной количеству функциональных групп в единице массы или объема смолы. Величина же рабочей емкости слабокислотных или слабоосновных ионитов в очень.значительной степени определяется концентрацией ионов водорода и других ионов (противоионов) в растворз[37]. [c.75]

    Наряду с инертными веществами роль носителей могут выполнять различные сорбенты. Такие носители-сорбенты, как ионообменные смолы, цеолиты, оксид алюминия, удерживают осадители в виде ионов (противоионов), а такие как активированный уголь удерживают молекулы осадителя, например различные органические основания. Одно из существенных требований к носителям-сорбентам состоит в том, что эти вещества должны удерживать на себе и вновь образуемые продукты реакции — осадки. [c.190]

    Иониты — это твердые высокомолекулярные, практически нерастворимые полиэлектролиты (полимерные кислоты, основания, и комплексные соединения), способные к эквивалентному и обратимому обмену подвижных ионов — противоионов — на ионы из [c.666]

    В отличие от низкомолекулярных электролитов, диссоциирующих иа ионы примерно одинаковых размеров, молекулы ноли-электролита распадаются па полиионы (макроионы), несущие большое количество фиксированных зарядов, и множеств малых ионов — противоионов. [c.143]

    Для простого случая обмена находящегося в растворе иона т на содержащийся в ионите противоион п в колонне с неподвижным фильтрующим слоем динамика процесса может быть представлена следующей системой уравнений [180, 181 ]  [c.309]

    В основе ионообменной хроматографии лежит обратимый сте-хиометрический обмен ионов анализируемого раствора на подвижные ионы — противоионы сорбентов, называемые ионообмен-никами (или ионитами). В качестве ионитов используют природные или синтетические смолы — твердые, нерастворимые в воде высокомолекулярные кислоты и их соли, содержащие в своем [c.108]

    Однако картина распределения ионов в растворе более сложна, чем в описанном ранее случае. Часть ионов, имеющих знак, обратный потенциалопределяющим ионам (противоионы), образует, благодаря тепловому движению около твердой поверхности ядра, диффузную ионную атмосферу. В результате часть противоионов удаляется от твердой поверхности на расстояние, превыщающее молекулярное (рис. 122,6). Такая структура двойного слоя (с изменяющейся толщиной от 1 до 10 мкм) была предложена Гуи. Здесь изменение термодинамического потенциала происходит по более сложному закону. [c.320]


    Жидкостные мембраны. В электродах с жидкостной мембраной пористая перегородка, пропитанная неводной фазой, разделяет две водные фазы - исследуемый раствор и внутренний раствор электрода. При этом неводная фаза содержит гидрофобные ионы (активные центры ионообменника), присутствие которых определяет ионоселективную функцию электрода, и противоположно заряженные определяемые ионы (противоионы). Поведение такой мембраны определяется коэффициентом распределения соли ионообменника с определяемым ионом между водным раствором и несмешивающимся с водой растворителем, образованием ионных пар в фазе мембраны и степенью проницаемости мембраны по отношению к посторонним ионам. [c.177]

    К органическим искусственным ионитам относятся ионообменные смолы с развитой поверхностью. Они-то и приобрели наибольшее практическое значение для очистки сточных вод. Синтетические ионообменные смолы представляют собой высокомолекулярные соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Пространственная углеводородная сетка (каркас) называется матрицей, а обменивающиеся ионы - противоионами. Каждый противоион соединен с противоположно заряженными ионами, называемыми фиксированными, или анкерными. Полимерные углеводородные цепи, являющиеся основой матрицы, связаны (сшиты) между собой поперечными связями, что придает прочность каркасу. [c.85]

    Первичный заряд частиц обусловлен диссоциацией на их поверхности концевых групп, таких как уже упоминавшиеся гидроксильные, карбоксильные и аминогруппы, и(или) адсорбцией ионов из водной фазы. Заряд гидрофильных коллоидов чаще всего определяется диссоциацией, а заряд гидрофобных частиц — адсорбцией. Под действием первичного заряда частиц к ним притягиваются противоположно заряженные ионы (противоионы), которые накапливаются вокруг поверхности частицы, тем самым частично нейтрализуя первичный заряд и создавая двойной электрический слой. [c.393]

    Слои локализованных на поверхности ионов, создающие заряд, формируют внутреннюю обкладку двойного электрического слоя. Эти ионы компенсируются равным числом противоположно заряженных ионов (противоионов), составляющих внешнюю обкладку ДЭС. [c.10]

    Рассмотрим равновесную систему, состоящую из ионита и раствора электролита с одноименным ионом (противоионом). Ионный обмен в такой системе происходить не будет. Адсорбироваться на ионите может только целиком молекула электролита, т. е. проти-воион вместе с коионом (ионом электролита, имеющим знак заряда противоположный знаку заряда противоиона), так как должна [c.172]

    Свойства синтетических ионитов в основном определяются числом и типом фиксированных ионов, типом подвижных ионов — противоионов, а также строением матрицы, особенно количеством по-пеперечных связей в ней. Числом гидрофильных групп и поперечных связей в матрице определяются наряду с другими факторами [c.113]

    Ионообменная хроматография. Сорбенты — природные или синтетические, неорганические или органические твердые ионоо бменники (иониты) разделение обусловлено различной способностью к обмену ионов хроматографического раствора на эквивалентное количество одноименно заряженных подвижных ионов (противоионов) в составе ионита, оно обусловлено различиями в величинах констант обмена разделяемых ионов анализируемого раствора. [c.8]

    На границе раздела твердой фазы и раствора, как правило, возникает двойной электрический слой. Происхождение его может быть двояким. Во-первых, возможна ионизация молекул, составляющих поверхностный слой твердой фазы, например ионизация молекул Н2310з, образующихся на поверхности частиц Si02 в воде. При этом один из ионов (противоион Н ) переходит в раствор, тогда как другой, связанный с дисперсной фазой более прочно (потенциалопре-деляющий ион SiOa ), остается на поверхности частиц. Во-вторых, на поверхности твердой фазы может происходить адсорбция одного из ионов, присутствующего в растворе электролита. При этом преимущественно адсорбируются ионы, входящие в состав твердой фазы или изоморфные с ними (например, I" или Ag+ для золя Agi). Если двойной электрический слой возникает в высокодисперсных и, следовательно, обладающих седиментационной устойчивостью системах, то образуется агрегативно устойчивый коллоидный раствор. [c.98]

    Матрица с фиксированными ионами Противоионы О Иоионы [c.185]

    Помимо адсорбции нейтральных молекул часто наблюдается адсорбция ионов, содержащихся в растворе. Это процесс более сложный по сравнению с молекулярной адсорбцией. Рассмотрим водные растворы, имеющие наибольшее практическое значение. Адсорбция ионов в значительной степени зависит от природы адсорбента. Поны, способные поляризоваться, адсорбируются, как правило, поверхностью веществ, состоящих из полярных молекул или ионов. Микроучастки поверхности, имеющие тот или иной заряд, адсорбируют только противоположно заряженные ионы. Противоионы электролита не адсорбируются поверхностью адсорбента, а накопляются вблизи ее, образуя двойной электрический слой. [c.359]

    Ионы, противоположные по знаку потенциал-опреде-ляющим ионам,— противоионы — окружают ядро в виде ионного облака, распределяясь между адсорбционным и диффузным слоями. При этом в адсорбционном слое (слой ионов, располагающийся в пленке жидкости, смачивающей поверхность ядра) преобладают потенциал— определяющие ионы, а в дуффузном — противоионы. [c.370]

    Вещества, проявляющие способность к ионному обмену, называются ионитами. Иониты имеют структуру в виде каркаса, сшитого , обычно, ковалентными связями. Каркас имеет положительный или отрицательный заряд, скомпенсированный противоположным зарядом подвижных ионов (противоионов), которые Могут легко заменяться на другие ионы с зарядом того же знака. Каркас выступает в роли полииона и обусловливает нера-ств(фимость ионита в растворителях. [c.68]

    Поверхность твердых частиц, находящихся в жидкс дисперсионной среде, приобретает электрический заряд в результате преимущественной адсорбции одного из ионов электролита либо диссоциации поверхностных ионогенных групп. Независимо от механизма возникновения заряда на коллоидной частице возникает двойной электрический слой (ДЭС), состоящий из ионов на поверхности (потенциалопределяющих ионов и из компенсирующих заряд поверхности ионов (противоионов) в растворе прячем часть противоионов находится в прилегающем поверхности и прочно связанном с ней адсорбционном >слвеу а другая часть — в диффузном слое удаленном от поверхности. Частицу дисперсной фазы вместе с ДЭС -называют мицеллой, мицелла является нейтральной. [c.114]

    В ионогенной группе могут присутствовать различные способные к обмену ионы (противоионы). Для указания вида иона, присоединенного к смоле, используют название соответствующего иона, за которым следует термин форма или Щ кл . Символ КЗОзН, упомянутый выще, обозначает, что ионообменник находится в Н-форме. При обмене Н" " на ионы Na , А , Ва " " или Ьа " " ионообменник получается в натриевой, серебряной, бариевой или лантановой форме. Анионообменники находятся в хло-ридной, сульфатной, нитратной и других формах. [c.22]

    Это неожиданное и совершенно непонятное, на первый взгляд, поведение полиэлектролита, резко отличающее его от полимеров-неэлектролитов, получило, однако, объяснение на основе теории электролитов Дебая — Хюккеля, согласно которой каждый ион в растворе окружен ионами противоположного знака. С ростом концентрации полимерного электролита одновременно увеличивается количество подвижных ничкомолекулярных ионов (противоионов Н+, N3+ или других) в растворе. Притягиваясь к зарядам на поверхности макроиона, противоионы как бы экранируют их, ослабляя тем самым взаимное отталкивание сегментов, несущих эти заряды, и способствуя, следовательно, ч1стичному свертыванию цепи (см. рис. 185). Этим же эффектом объясняется наличие максимумов на уд ..  [c.575]

    В отличие от, низкомолекулярных электролитов, диссоциирующих на ионы примерно одийаковых размеров, молекулы полиэлектролита распадаются па полиионы (макроиопы), несущие большое количество фиксированных зарядов, и множество малых ионов — противоионов. [c.143]

    Па заре существования теории Уитмора карбониевые ионы большей частью считали свободными, или неассоциированными, но очень реакционноспособными и имеющими чрезвычайно короткое время жизни. Позднее стали считать, что активные частицы существуют в значительной степени в виде ионных нар ион— противоион [17, 18], что было основано на представлении о необходимости значительной затраты энергии па разделение этой пары. Надо заметить, что это согласуется также с теорией Дэвис и Измайлова, показавших, что при кислотно-основном взаимодействии незавершенность протонного перехода А... Н... В является правилом. Как бы в соответств1ш с этим С. Уипстейн и сотр. [19] еще более детально разделили промежуточные кинетические формы на ковалентные молекулы контактные ионные пары ионные пары, разделенные растворителем диссоциированные ионы. [c.92]


Смотреть страницы где упоминается термин Ионы-противоионы: [c.46]    [c.321]    [c.306]    [c.73]    [c.173]    [c.594]    [c.150]    [c.253]    [c.79]    [c.173]    [c.298]    [c.299]    [c.440]   
Физическая и коллоидная химия (1964) -- [ c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Противоионы



© 2024 chem21.info Реклама на сайте