Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замораживание поверхности

    Для сопоставления наблюдавшейся поляризационной кривой с расчетной необходимо было определить целый ряд параметров, входящих в выражение (10.67). Эффективная электропроводность х, как было показано в 10.3, пропорциональна жидкостной пористости , к. В первом приближении можно считать, что эффективный коэффициент диффузии растворенного в электролите газа также пропорционален gy . Величина g находилась методом замораживания. Поверхность газовых нор рассчитывалась по формуле [c.357]


    Выделение каучука из латекса. Агрегативную и кинетическую устойчивость синтетических латексов, учитываемую на всех стадиях технологического процесса их получения и переработки, определяет наличие на поверхности латексных частиц адсорбционного слоя из молекул гидратированного эмульгатора. Свойства межфазной поверхности — адсорбированного слоя гидратированных молекул поверхностно-активных веществ (ПАВ) со структурой, близкой к мицеллярной [26], — определяют устойчивость латекса при транспортировании насосами, при хранении, при выделении каучука из латекса. Специфичность воздействия отдельных факторов на латексы привела к делению агрегативной устойчивости на отдельные виды стабильности — к механическому воздействию, к электролитам, к замораживанию, к тепловому воздействию, к действию растворителей [27], но во всех случаях при нарушении устойчивости происходит снятие или преодоление одного и того же по своей природе стабилизующего барьера [28—30]. [c.255]

    Метод замораживания-оттаивания заключается в кратковременном замораживании латекса (обычно бутадиен-стирольного или его смеси с высокостирольным или полистирольным) на поверхности охлаждаемого изнутри вращающегося барабана, частично погруженного в латекс. Замороженный латекс срезается с барабана ножом и поступает в емкость для оттаивания. Особенностям этого процесса посвящен ряд работ [14, 15]. Недавно были изучены некоторые его закономерности [57]. При замораживании латекса в тонком слое и последующем оттаивании кинетика процесса агломерации частиц носит сложный характер, как это видно из данных рис. 7 [57]. Зависимость поверхностное натяжение — [c.596]

    В табл. 11.2 приведены результаты, полученные при исследовании объемных эффектов замораживания при —8°С образцов одного из латексов, различающихся степенью адсорбционной насыщенности поверхности частиц эмульгатором [529]. Снижение плотности упаковки адсорбционного слоя эмульгатора приводит к уменьшению эффективной толщины прослоек незамерзающей воды у поверхности латексных частиц. [c.192]

    Существование индукционных периодов при коагуляции замораживанием показывает, что перестройка структуры воды в граничных гидратных прослойках на поверхности частиц замороженного латекса к структуре обычного льда требует известного времени. Как видно из данных, приведенных в табл. 11.3 и рис. 11.2, электролит способствует этой перестройке при введении электролита в латекс количество незамерзающей (гидратной) воды в нем снижается. [c.197]

    Таким образом, рассмотренные закономерности коагуляции латексов электролитами, замораживанием и перемешиванием приводят к выводу, что во всех случаях существенную роль в протекании коагуляционных процессов играет фактор агрегативной устойчивости, связанный со структурой и свойствами граничных гидратных прослоек у поверхности латексных частиц. [c.199]


    Возможность спекания отдельных участков частицы катализатора была показана также следующим опытом. Содержащий 12% кокса катализатор регенерировали при 800 °С до тех пор, пока регенерированная зона не достигла глубины примерно 7з радиуса шариков. Затем катализатор охладили, выделили закоксованные ядра методом мгновенного замораживания и удалили с них кокс регенерацией при 600°С. Удельная поверхность ядер оказалась равной 357 м /г, а периферийных слоев — 240 м /г. Большая поверхность ядер в данном случае получалась не только по причине меньшего перегрева во время регенерации, но и вследствие защитного действия кокса. [c.81]

    Принципиальная схема устройства сублимационной сушилки показана на рис. ХУ-37. В сушильной камере /, называемой сублиматором, находятся пустотелые плиты 2, внутри которых циркулирует горячая вода. На плитах устанавливаются противни 3 с высушиваемым материалом, имеющие снизу небольшие бортики. Поэтому противни не соприкасаются поверхностью днища с плитами 2 и тепло от последних передается материалу, преимущественно радиацией. Паро-воздушная смесь из сублиматора 1 поступает в трубы конденсатора-вымораживателя 4, в межтрубном пространстве которого циркулирует хладоагент, например аммиак. Конденсатор включается в один циркуляционный контур с испарителем аммиачной холодильной установки и соединяется с вакуум-насосом, предназначенным для отсасывания неконденсирующихся газов и воздуха. В трубах конденсатора происходят конденсация и замораживание водяных паров. Для более удобного удаления льда обычно используют два конденсатора (на рис. ХУ-37 условно показан один), которые попеременно работают и размораживаются. [c.630]

    При вхождении в систему пористого слоя новообразований и включении в нее мембранных явлений чувствительность системы к внешним воздействиям резко возрастает, поскольку может появляться своеобразный эффект усиления сигнала . Не исключено, что кооперативные процессы проявляются также при адсорбции воды на цементных частицах (кластерные образования, гроздья) и при формировании из водных кластеров на поверхности гидросиликатов зародышей льда в процессе замораживания цементного камня. В таких сопряженных системах участвуют как атомы активных центров, так и молекулы водного кластера. Регибридизация связей зр , зр-, 3- и др.), вероятно, способствует образова- [c.87]

    Если азот, содержащий смесь молекул и атомов, направлять на охлаждаемую жидким гелием поверхность, происходит его мгновенное замораживание. Оно сопровождается ярким зеленым свечением, которое переходит затем в синие вспышки. И то, и другое обусловлено выделением энергии при частично происходящем обратном соединении (рекомбинации) нормальных и возбужденных атомов азота в молекулы. Однако, многие атомы оказываются при замораживании отделенными друг от друга молекулами N2. В таком замороженном состоянии они могут некоторое время (несколько часов) сохраняться. Если содержащее их твердое вещество нагреть, происходит рекомбинация атомов, сопровождающаяся вспышкой синего света. [c.388]

    Замораживание дефектов . Предположение о возможности замораживания дефектов основывается на том факте, что для установления равновесной концентрации дефектов требуется определенный период времени. Таким образом, если кристалл охлаждается, то дефекты решетки должны непрерывно исчезать. Дефекты по Френкелю будут исчезать в результате рекомбинации вакансий и межузельных атомов, а дефекты по Шоттки — вследствие миграции вакансий к поверхности кристалла и границам зерен. Как показано [25], влияние этого эффекта на обычную низкотемпературную проводимость чистого кристалла незначительно. [c.284]

    Хранилище имеет 2 трубопровода для закачки и отбора сжиженного газа и трубу, снабженную дыхательными клапанами. Занолнение хранилища производится до уровня 0,6 м от верха котлована. Первичное заполнение выполняют медленно, чтобы предотвратить возможность резкого термического воздействия на стенки котлована и образования трещин при разбрызгивании жидкости. Большинство грунтов в замороженном состоянии пригодно для сооружения подземных хранилищ сжиженного газа. Если грунт очень сухой, может потребоваться предварительная пропитка его водой перед замораживанием. Вспучивание почвы, наблюдающееся в основном до начала замораживания грунта в непосредственной близости от котлована, приводит к повышению уровня поверхности на 15 см. [c.44]

    Рассмотрим замораживание сферического объема воды, начальная температура которого 15,5° С, при условии, что начиная с нулевого момента времени, температура поверхности сферы поддерживалась при —15,5° С. Для дальнейшего упрощения физической задачи предполагается, что тепловые характеристики независимы от температуры, что плотность воды и льда одна и та же и перенос тепла наблюдается только в радиальном направлении. [c.153]

    Лиофилизацией называется метод высушивания веществ в замороженном состоянии. В процессе замораживания не происходит ороговения вещества и не теряется их химическая активность. Вещество получается рыхлым, пористым, обладающим большой поверхностью и высокой скоростью растворения. Метод лиофилизации используется также для выделения полисахаридов из водного раствора. [c.52]

    ГОТОВКИ ткани, и препарирование доводится до конца. Результаты, полученные при использовании данной методики, в качестве примеров приведены на рис. 11.10. В недавно опубликованной работе [347] метод излома в замороженном состоянии с большим успехом был использован для изучения хроматина эритроцита цыпленка. Процедура заключается в быстром замораживании пропитанных глицерином образцов, которые разламываются в жидком азоте. После излома в замороженном состоянии клетки тканей оттаивают в фиксаторе. Фиксация происходит очень быстро, поскольку фиксатор быстро диффундирует в разломанные клетки, ив то же время имеется достаточно времени для выхода растворяющих составляющих, позволяя за счет этого глубоко заглянуть в клетку, как показано на рис. 11.11. Методы изломов в замороженном состоянии имеют много преимуществ по сравнению с изломом в сухом состоянии, не последним из которых является уменьшение количества остатков на поверхности образца, которые могут не только завуалировать поверхность, но и заряжаться под электронным пучком. [c.236]


    Образец должен быть как можно меньше при сохранении физиологической активности, и как можно больше должно быть удалено поверхностных жидкостей, по возможности без нарушения баланса внутренних электролитов клеток. Несмотря на то что в литературе имеется много данных по скоростям замораживания для различных охлаждающих смесей, следует помнить, что эти скорости были измерены термопарами, размеры которых много меньше, чем образец, который мы пытаемся охладить. Хотя измеренные скорости охлаждения для охлаждающих смесей являются полезным индикатором, лучшей мерой эффективности данного охлаждающего режима является размер кристаллов льда, а следовательно, величина повреждений и перераспределения элементов в анализируемой части образца. Даже при ступенчатом охлаждении любой образец диаметром более 250 мкм мог бы перейти в стекловидное состояние на внешней поверхности, в то время как в центре его могли бы находиться кристаллы льда. [c.292]

    Подачу сжиженного пропана прекращали при замораживании грунта на всей глубине будущего котлована на расстоянии 1,2. внутри и снарун и установленного кольца труб. Во время процесса замораживания поверхность земли в ра1"юне укладки труб изолировалась. [c.71]

    Льдогенератор чешуйчатого льда (УкрНИХИ) (рис. 203) представляет собой горизонтальный цилиндр, медленно вращающийся от зубчатой передачи (5—8 об/мин). С одного конца полого вала подается жидкий аммиак на испарение, а с другого отсасываются образующиеся пары. Цилиндр окружен кожухом, в нижнюю часть которого подается вода для замораживания. Поверхность цилиндра при вращении его смачивается водой, которая замерзает в виде тонкой корки и удаляется при помощи ножа-резца. Чешуйки и снежная масса падают вниз в бункер или в пресс для получения брикетов льда в форме цилиндриков. [c.400]

    Способность системы сохранять дисперсность во времени при отсутствии внешних астабнлизующих воздействий далеко не исчерпывает требований к устойчивости синтетических латексов. В отличие от латексов — полупродуктов эмульсионных каучуков, которые должны сохранять устойчивость лишь на стадиях полимеризации и отгонки незаполимеризовавшихся мономеров, товарные латексы подвергаются в процессе их получения и переработки ряду дополнительных специфических воздействий механических [8—12], замораживанию-оттаиванию [13—16], испарению влаги с поверхности и в объеме [8, 17, 18], а также в латексы вводят электролиты [9, 19—24], наполнители, неионные эмульгаторы в качестве стабилизаторов [23, 25—28]. 6о многих случаях требуется ограниченная устойчивость к одним и высокая — к другим коагулирующим воздействиям. Например, при проведении процесса агломерации частиц латекс должен обладать лишь ограниченной устойчивостью к агломерирующим воздействиям, препятствующей макрокоагуляции этот же латекс в процессе дальнейшей переработки при получении на его основе пенорезины должен обладать высокой устойчивостью к механическим воздействиям, но ограниченной устойчивостью к действию специфических химических агентов — латекс должен быстро желатинировать. (Иногда желательно даже, чтобы латекс желатинировал при повышенной температуре без введения специальных агентов. Такой процесс положен, например, в основу одного из способов получения пенорезинового подслоя при производстве ковров.) [c.588]

    В ряд случаев, когда и зучается гомогенная газовая реакция, протекающая только на катализаторе, или реакция между газом и нелетучей твердой фазой, замораживание (закаливание) равновесной газовой смеси не представляет труда как только прекращается контакт газовой смеси с поверхностью катализатора пли твердого участника реакции, состав смеси перестает изменяться. [c.302]

    Вопрос о существовании незамерзающих прослоек воды у поверхности латексных частиц представляет интерес в связи с изучением природы устойчивости латексов при замораживании [526]. Впервые этот метод при исследовании латексов был применен в работе [527]. Методика дилатометрических и термографических измерений и обработки результатов приведена в [526—529]. Определялись объемные и тепловые эффекты фазового перехода при замораживании или плавлении диализованных латексов. На рис. 11.1 приведены в качестве примера типичные дилатограммы замораживания исследованных образцов. Эффективную толщину незамерзающих прослоек воды (А) вычисляли по формуле  [c.191]

    Снижение К с ростом концентрации электролита обусловлено двумя факторами прогрессирующим разрушением и утонь-шением гидратных (незамерзающих) прослоек воды под влиянием электролита и уменьшением удельной поверхности дисперсной фазы латекса вследствие агрегации частиц. При концентрации Na l более 0,5 кмоль/м латекс при замораживании коагулирует и эффект гидратации (незамерзающей воды) исчезает. [c.193]

    Существенно новые результаты были получены при изучении коагуляции латексов замораживанием в присутствии электролитов [537, 538]. Было установлено, что введение умеренных количеств электролитов снижает устойчивость латекса при замораживании прежде всего в соответствии с электростатическим механизмом их воздействия. Сенсибилизирующее влияние KNO3 и Ва(ЫОз)2 подчиняется закону Сг = onst отношение концентраций этих электролитов, вызывающих максимальный сенсибилизирующий эффект, равно л 70 1. Однако и в этом случае агрегация и коагуляция латекса происходит лишь при температурах более низких, чем криогидратные точки растворов этих электролитов (равные, соответственно, —2,9 и —0,7 °С), т. е. после полного промерзания свободной водной фазы. Это означает, что потеря устойчивости латекса при замораживании связана и с нарушением структуры адсорбционно-гидратных слоев на поверхности частиц. Таким образом, и при замораживании латекса электролит выполняет двоякую сенсибилизирующую роль, снижая электростатический барьер и ослабляя структурное отталкивание. [c.197]

    Удельная поверхность и пористая структура катализатора сильно зависят от способа удаления растворителя из осадка, геля, суспензии нли из пропитанного носителя. Этот способ выбирают с учетом того, в какой форме катализатор будет в дальнейшем использован. Часто применяют непосредственное выпаривание, но оно может привести к сегрегации компонентов. На микроструктуру также влияет скорость сушки, и ее следует регулировать. Интересные результаты получаются при замораживании силикагелей, содержащих большое количество воды. Замороженный продукт уплотнения геля оксида кремния становится не-растворпмым в воде, и после оттаивания оксид кремния приобретает структуру кристаллов льда. Так, если инициировать рост дендритных кристаллов льда, то можно получить волокна оксида кремния [21]. Методом замораживания были получены силикагели с чрезвычайно высокими удельными поверхностями порядка 1000 м /г. Замена воды в геле на спирт и выдерживание его при критических условиях в автоклаве привели к получению образцов с высокой удельной поверхностью и очень большими порами [22]. Использование для промывки геля жидкостей с более низким, чем у воды, поверхностным натяжением, например ацетона, предотвращает обусловленное капиллярными силами захлопывание узких пор при сушке геля. Одним из недостатков способа получения твердых веществ с высокой удельной поверхностью через образование геля является низкая концентрация твердого вещества в растворе. Приходится удалять большие количества растворителя, что требует дополнительных затрат. Кроме того, образуется чрезвычайно рыхлый порошок, и перед дальнейшим использованием его обычно формуют. [c.23]

    Имеется определенное число работ по исследованию разлития, например метана, на поверхности воды. Так в статье [Kneebone,1974] сообщается, что при разлитии СПГ по поверхности моря из-за турбулентности в воде замораживания [c.75]

    На основании лабораторных исследований было получено вещество, названное ниогрином испытания его показали, что при паие-сении иа металлическую поверхность прочность примерзани глины, с критической влажностью при минус 30 — минус 40 °С и продолжительностью замораживания 4 ч снижается в 8—10 раз (с 16 до 1,5—2,0 кгс/см ). Кроме того, при использовании указанного средства прочность прилипания влалсных глин снижается в 2—2,5 раза (до 30—40 г/см2 по сравнешш с 80 г/см без профилактики). В дальнейшем на установке замедленного коксования были полу- [c.137]

    Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий, например при механичес1юм воздействии (ультразвука), действии электрического поля, при нагревании или замораживании системы. Коагуляция лиофобных золей может быть вызвана также их сильным разбавлением или концентрированием. Наиболее часто коагуляция дисперсных систем происходит при добавлении электролитов. Различают два типа электролитной коагуляции коллоидных систем 1) нейтрализационную, происходящую в результате снижения поверхностного потенциала частиц 2) конпен-трационную, протекающую вследствие сжатия диффузной части двойного электрического слоя (потенциал поверхности в этом случае не изменяется). [c.162]

    Переработка литьем под давлением предоставляет большие возможности для управления надмолекулярной структурой полимеров, поскольку, варьируя параметры процесса заполнения формы, можно в широком диапазоне изменять характер течения расплава. Кроме того, при литье под давлением достигается интенсивный перенос тепла по крайней мере дтя молекул, расположенных у поверхностей формующей полости. Иными словами, вероятность замораживания молекулярной ориентации, вызванной течением, наиболее высока вблизи поверхностных слоев изделия и наиболее низка в середине издепия, следствием чего является образование слоистых структур. [c.538]

    Методы сиитеза, связанные с замораживанием равновесий, 06f)i4H0 сводятся к достижению высокотемпературных равновесий или вообще к получению высокотемпературных продуктов реакции и резкому переводу их в низкотемпературные условия. Эти методы различаются по способу получения высокотемпературных продуктов (пиролиз твердого или летучего вещества, электрический разряд и газе и т. д.) и по способу охлаждения. Особое место в синтезе занимают так называемые матричные методы, когда азофазные продукты конденсируются в массу или на поверхность кристаллической решетки твердого аргона, СО или других матричных газов . [c.406]

    Теоретические основы плазмохимии [ азработаны. Созданы аппараты для закалки, методы введения в плазму сырья (в том числе порошков) н. моментального замораживания продуктов реакиии. Институтом теплофизики Сибирского отделения АН СССР и конструкторами бюро Энергохиммаш под руководством М, Ф. Жукова создан набор плазмотронов мощностью от 100 Вт до 1000 кВт самого различного назначения для резки плазменной струей силикатных материалов, для HanHJieuHM иа рабочие поверхности деталей машин порошковых мета. ьюв, д.и1 переработки токсичных отходов химической промышленности. [c.236]

    К физическим факторам могут быть отнесены температурный—нагревание растворов выше 50—60° С многократное чередование замораживания и оттаивания денатурация под высоким давлением в 1000 кг/см и выше так, напрнмер, ферменты трипсин и химотрипсин при pH 5,0—5,2 под воздействием давления 7750 кг см через 5 мин инактивируются на 50% денатурация при воздействии ультразвуковых волн связана с разворачиванием молекул, а при более сильном воздействии ультразвука происходит даже paзpyшefIi e ковалентных связей при образовании мономолекулярных пленок на поверхности белковых растворов наблюдается так называемая поверхностная денатурация белка ультрафиолетовые лучи и ионизирующая радиация вызывают химические говреждеиия белковой молекулы, разрушая водородные связи, окисляя дисульфидные группировки, обусловливают исчезновение нативных третичных и вторичных структур белка. Интересными также являются наблюдения, указывающие на процессы денатурации, происходящие при старении белков. [c.209]

    Выпускаются также приборы G /FTIR, в которых элюируемые из капиллярной или насадочной колонки соединения улавливаются в виде твердой аргоновой матрицы, образующейся при использовании в качестве газа-носителя смеси гелия и аргона (с последующим удалением гелия в молекулярном сепараторе струйного типа, см. раздел И 1.2.7) и омывании элюатом зеркальной поверхности позолоченной медной пластины, охлаждаемой в специальном криоколлекторе до температуры 12—15 К. Конструкция криоколлектора позволяет производить замораживание до 32 идентифицируемых соединений в течение одного аналитического цикла. Их последовательное улавливание и регистрация ИК-спектров отражения твердых матриц осуществляются автоматически с помощью встроенного карусельного механизма, приводимого в действие, как только концентрация каждой зоны в элюате превысит заданную. [c.209]

    Еще одной высокоэффективной областью их использования становится защита от коррозии наружной поверхности труб, из которых монтируют тепловые сети. В настоящее время по мере перевода отопления зданий на централизованное водоснабжение в трубы подают воду значительно более горячую (до 440К), чем ранее. На столь горячих трубах традиционные битумные покрытия быстро стареют и перестают защищать металл от коррозии. Расход на замену в условиях города 1 км трубопровода для горячей воды составляет 200 тысяч рублей. Косвенный ущерб (от замораживания теплосети в квартирах, простудных заболеваний, снижения производительности труда, нарушения уличного движения) может быть еще большим. [c.42]

    Синтезирован воднодисперсионный биоцидный препарат — латекс АБП-10П, представляющий собой продукт эмульсионной со-полимеризации оловоорганического мономера с эфирами акриловой и метакриловой кислот. Он характеризуется стабильностью при хранении, при многократном замораживании и повышенной адсорбцией латексных частиц на тканях и пористых поверхностях [8, с 58]. [c.85]

    О.В.Куров и Р.К.Мелехов [101]. Применение таких методик позволяет изучать электрохимическое состояние в районе вершины трещины непосредственно в процессе испытания и имеет определенные преимущества перед другими методами, в частности, измерением электрохимических параметров открытой поверхности образца или замораживанием коррозионной среды в трещине [1O2, 103] с последующим ее анализом. [c.43]


Смотреть страницы где упоминается термин Замораживание поверхности: [c.88]    [c.165]    [c.334]    [c.50]    [c.44]    [c.265]    [c.108]    [c.239]   
Биохимия Том 3 (1980) -- [ c.57 ]




ПОИСК







© 2025 chem21.info Реклама на сайте