Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие замораживание

    Мы уже видели, что наличие такого катализатора, как пары воды, способствует установлению теплового равновесия за счет дезактивации молекул с возбужденными колебаниями при столкновениях. Поэтому следует ожидать, что рассмотренное выше увеличение степени диссоциации будет меньше при горении в присутствии влаги или водорода. Так, для обычных топлив эффект увеличения степени диссоциации гораздо менее заметен. При определении степени диссоциации следует помнить, что химический анализ продуктов горения вряд ли может показать истинный состав смеси в тот момент, когда выхлопные газы покидают двигатель, поскольку степень диссоциации будет уменьшаться в течение накопления пробы за счет установления полного равновесия. Замораживание нри тех условиях, которые существуют в самом [c.211]


    Новой областью применения метода проведения процесса при очень высокой температуре с последующим замораживанием системы в состоянии равновесия, соответствующего этой температуре, являются превращения с участием плазмы. Использование плазменных горелок (Г > 5000 К) обеспечило дополнительные возможности осуществления химических процессов. С их помощью можно [c.376]

    При определении оптимального времени контакта и условий закалки очень важно установить, где образуется ацетилен — в зоне горения или за пламенем. Этот вопрос важен с технологической точки зрения, так как определяет время реакции, зависящее в этом случае не только от времени контакта (о бъем реактора расход), но и от формы и размеров пламени. Определение зоны, в которой происходит конверсия в ацетилен, определяет конструкционные характеристики горелки, гидродинамические характеристики потока газов (ламинарный или турбулентный), место ввода охлаждающей воды для замораживания равновесия и т. д. [c.112]

    В результате реакции образуется вода, однако вследствие малого времени контакта гидролиз цианистого водорода не происходит. Продукты реакции быстро охлаждают до 150 °С (замораживание равновесия) и затем пропускают через абсорбер для удаления оставшегося аммиака водным раствором сульфата аммония. Очищенные газообразные продукты поступают в другой абсорбер, где при температуре 5 °С цианистый водород поглощается водой. Из водного раствора его можно выделить перегонкой. ВыхоД цианистоводородной кислоты достигает 65—91 % (по метану) и 60—83% (по аммиаку). Схема одной из установок показана на рис. 82. [c.226]

    Замороженная фаза не обязательно является метастабильной в смысле 18. Обычный полистирол, например, не может кристаллизоваться. Поэтому он никогда не может быть переохлажденной жидкостью. Напротив, при температуре, которая хорошо воспроизводится, наступает замораживание, превращающее полистирол в стекло . В противоположность этому силикатные стекла или глицерин появляются сначала во внутреннем равновесии как переохлажденные жидкости, которые замораживаются лишь при более низкой температуре. В этих случаях замороженная фаза является одновременно по отношению к кристаллам метастабильной. [c.181]

    Для некоторых веществ конформация в твердой фазе может зависеть от условий замораживания вещества. Например, при охлаждении 1,1,1-трифтор-З-хлорпропана ниже —103,4° С образуется кристаллическая модификация, в которой все молекулы имеют одинаковую гош-конформацию. При температурах от —103,4°С до температуры плавления вещества (—93,8° С) в кристалле находятся в равновесии оба поворотных изомера, что фиксируется по появлению в колебательном спектре полос анти-изомера. Если же очень быстро охладить вещество жидком азотом (—196° С), то при этом вымораживаются обе конформации, но равновесия между ними нет из-за невозможности преодоления потенциального барьера при низкой температуре. При нагревании такого образца до —157° С все молекулы переходят в гош-конформацию. [c.221]


    Для определения степени термической диссоциации вещества применяют различные методы. Один из них основан на так называемом замораживании равновесия . Если образовавшиеся при высокой температуре продукты диссоциации быстро охладить, то равновесие не успевает сразу сместиться, а затем уже не смещается ввиду крайне малой скорости реакции при низкой температуре. Таким образом сохраняется соотношение между веществами, существовавшее при высокой температуре. Это соотношение может быть определено путем анализа. [c.215]

    Метод замораживания. Он применяется для изучения констант равновесия медленно протекающих реакций комплексообразования. Его сущность — в быстром и количественном выводе одного из участвующих веществ в равновесии диссоциации комплекса из сферы реакции. [c.267]

    Методы синтеза, связанные с замораживанием равновесий [c.406]

    Основной идеей синтезов этого класса также является замораживание равновесия, но путем перехода к состоянию окисления с резко повышенной инертностью комплексов. Например, ионы Со + и Сг + образуют в водных растворах при 20—30 °С лабильные комплексы, а ионы Со + и Сг + — инертные, поэтому соединение Со + или Сг + иногда легче получить окислением соответствующего комплекса Со + или г +, чем проводить реакции за- [c.408]

    При этом образуется окрашенное в черный цвет пирофорное вещество, по составу близкое к РеО. В то же время полученная таким путем закись железа не является стехиометрическим соединением состава 1 1. Как показали физико-химические исследования [4, с. 89 5], область существования закиси железа стехиометрического состава (1 1) лежит вне области гомогенности, отвечающей веществу, которое принято считать закисью железа. Оксид РеО стехиометрического состава можно получить в системе Ре—О лишь при высокой температуре с последующей закалкой (быстрое охлаждение) для замораживания равновесия. Если охлаждение оказывается недостаточно быстрым, происходит диспропорционирование  [c.122]

    На практике высоких температур при синтезе окиси азота достигают применением вольтовой дуги. При этом температура реакции достигает 3000° С. Образующуюся окись азота быстро охлаждают ( замораживание равновесия). [c.527]

    Для изучения химических равновесий применяют ряд различных методов. Одним из наиболее общих является замораживание равновесий. Метод основан на том, что при достаточно низких температурах скорость реакций падает практически до нуля. Если, например, в тугоплавкой металлической трубке заключить смесь водорода с кислородом и выдержать ее некоторое время при [c.108]

    В высокомолекулярных веществах охлаждение до температур, при которых сохраняются только колебания звеньев около положений равновесия, также соответствует обычно состоянию их застеклования, а не кристаллизации. В полимерах при охлаждении резко возрастает внутренняя вязкость, а укладка длинных цепей в правильную решетку встречает дополнительные затруднения (см. ниже) поэтому кристаллизация полимеров при охлаждении наблюдается гораздо реже, чем их переход в застеклованное состояние, в котором в полимере не только цепи, но и все звенья находятся в фиксированном состоянии (сохраняются лишь колебательные движения звеньев), деформация материала сильно затруднена, он становится неэластичным и хрупким, как обычное стекло например, известно, что каучук при замораживании теряет свою способность к растяжению и становится хрупким. Так как морозостойкость полимерных материалов заключается в сохранении ими эластичности при низких температурах, то температура стеклования определяет морозостойкость эластичных материалов и имеет большое техническое значение. Переход полимеров в застеклованное состояние также характеризуется температурами Tg , тех- [c.224]

    Наличие двух л7-компонент в спектрах нитроксилов свидетельствует о равновесии между сольватированной и несольватирован-ной по периферии формами радикала при замораживании. Относительные интенсивности этих компонент несколько изменялись [c.189]

    Очень не простым оказывается вопрос о выборе боковой жидкости. В зависимости от конкретных обстоятельств могут быть различные решения этого вопроса, более или менее удовлетворяющие основным требованиям, предъявляемым к электрофоретическим измерениям. Так, в качестве боковой жидкости применяют серум, полученный при коагуляции исследуемого латекса замораживанием, или диализат, в равновесии с которым находился латекс перед завершением диализа. [c.74]

    На основании кинетической интерпретации реакций переаминирования и контрольных опытов следует, что замещенные производные мочевины диссоциируют на фенилизоцианат и соответствующие амины. Оценку равновесия диссоциации удалось осуществить путем замораживания смеси в состоянии равновесия и связывания образовавшегося изоцианата с помощью более основного амина. Потенциометрическим титрованием определяют избыток этого амина, а для контроля — и образовавшийся амин. Учитывая расширение растворителя, константы диссоциации замещенных производных мочевины даны в моль-кг" . [c.355]


    Определение состава равновесной смеси в системе углерод — водород — углеводород осуществлялось посредством приведения водорода в тепловое и химическое равновесие в нагретой углеродной трубке, быстрого замораживания и забора газовой пробы для анализа. Существуют два критических и до некоторой степени противоположных временных условия, которые необходимо выполнить, чтобы подойти к наблюдению истинного равновесного состояния. Во-первых, время, в течение которого газ доводится до полного теплового и химического равновесия с углеродной трубкой, должно быть значительным. Во-вторых, замораживание газа до комнатной температуры необходимо производить в достаточно малый промежуток времени, чтобы не смогло произойти обращения равновесия. Первое условие достаточно хорошо соблюдается, что видно из сравнения с результатами работы Мейера и Гомера [9]. Из их работы следует, что если графитовая поверхность не является достаточно гладкой с точки зрения атомных размеров (в наших исследованиях графитовые трубки определенно не были такими), то полное тепловое и, вероятно, химическое равновесие наступает в среднем после одного столкновения газовой молекулы с поверхностью. Большая поверхностная неоднородность обычного графита делает маловероятным тот факт, что отдельная молекула вернется в газовую фазу после одного столкновения более вероятно, что молекула совершает многочисленные короткие передвижения от одного участка поверхности к другому и каждое из них приближает систему к равновесию. Таким образом, если время контакта достаточно велико и позволяет каждой молекуле совершить множество столкновений с горячей поверхностью углеродной трубки, то установится полное тепловое и химическое равновесие. [c.309]

    В некоторых пробах, которые были взяты при температурах выше 3000° К, дополнительный масс-спектроскопический анализ указал на присутствие небольших количеств диацетилена, образующихся преимущественно путем рекомбинации двух радикалов СгН. Таким образом, хотя из этих проб нельзя получить никаких количественных данных для самого процесса равновесия, эти пробы дают качественное подтверждение предлагаемому механизму процесса равновесия и замораживания . [c.319]

    Не приходится удивляться, что наличие объемистых заместителей в 2,3-положениях бутадиена предотвращает реакцию диенового синтеза вследствие замораживания конформационного равновесия на стороне трансоидной формы 2,3-ди-трега-бутил-бутадиен и аналогичные соединения инертны по отношению к малеиновому ангидриду [606]. [c.562]

    В качестве меченого атома был использован As с периодом полураспада 26,8 ч. Путем растворения радиоактивной трехокиси мышьяка в щелочи готовился раствор арсенита. Изучаем мые растворы получали из смеси радиоактивного арсенита, не-> радиоактивной мышьяковой кислоты, соляной кислоты и иодистого калия. Степень обмена за данный промежуток времени определяли после замораживания равновесия добавлением воды и избытка аммиака к пробе, отобранной из системы. Арсе-нат-ион осаждали в виде арсената магний-аммония, который затем прокаливали. Радиоактивность полученного порошка определили с помощью электроскопа. Специальными опытами было показано, что прямого обмена между As и As в условиях реакции не происходит. Из скоростей обмена, измеренных при различных концентрациях реагирующих веществ в условиях равновесия с использованием зависимости скорости от концентрации, найденной для реакции восстановления мышьяковой кислоты в условиях, далеких от равновесия, было рассчитано значение константы скорости 2 обратной реакции. Эти [c.376]

    Методы сиитеза, связанные с замораживанием равновесий, 06f)i4H0 сводятся к достижению высокотемпературных равновесий или вообще к получению высокотемпературных продуктов реакции и резкому переводу их в низкотемпературные условия. Эти методы различаются по способу получения высокотемпературных продуктов (пиролиз твердого или летучего вещества, электрический разряд и газе и т. д.) и по способу охлаждения. Особое место в синтезе занимают так называемые матричные методы, когда азофазные продукты конденсируются в массу или на поверхность кристаллической решетки твердого аргона, СО или других матричных газов . [c.406]

    Для изучения химических равновесий применяется ряд различных методов. Одним из наиболее общих является замораживание равновесий. Метод основан на том, что при достаточно низких температурах скорость реакций падает практически до нуля. Если, например, в тугоплавкой металлической трубке поместить смесь водорода с кислородом и выдержать ее некоторое время при 2500 °С, то установится соответствующее этой температуре равновесие между исходными газами и водяным паром. При очень быстром охлаждении трубки равнобесие не успевает сместиться, а в дальнейшем оно не смещается из-за крайне малой скорости реакции при низких температурах. Благодаря этому анализ содержимого трубки даст результаты, соответствующие положению равновесия при 2500 °С. Для контроля опыт повторяют, достигая равновесия с другой стороны — в нашем примере, вводя первоначально в трубку не смесь водорода с кислородом, а воду. Результаты обоих опытов должны совпасть, так как одно и то же положение равновесия одинаково достижимо с обеих сторон. [c.130]

    В углеводородах с разветвленными цепями проявляются свои конформационные особенности. Рассмотрим их на примере 2,3-диметилбутана, скелет которого содержит два разветвления. Было установлено, что КР- и ИК-спектры этого вещества при понижении температуры и при замораживании существенно не изменяются. Следовательно, конформационное равновесие практически не зависит от температуры, а это может наблюдаться, если энергии конформеров очень близки. Такими конформерами, очевидно, являются  [c.234]

    Позднее была выдвинута модификация модели внезапного замораживания — так называемая модель равновесной рекомбинации [358—360]. В соответствии с ней область замороженного течения заменяется областью, в которой рассматривается только процесс рекомбинации. Модель равновесной рекомбинации дает хорошие результаты при расчете неравновесных течений газовых смесей с компонентами, концентрации которых стремятся к нулю далеко вниз по потоку. Ченг и Ли [376] показали, что в случае течения газа со значительной степенью диссоциации имеется достаточно обширная переходная область от течения почти равновесного к течению с ойределяющей ролью процессов рекомбинации. Область перехода можно разделить на две зоны. Зона течения, примыкающая к равновесной области течения, характеризуется небольшим отклонением от состояния равновесия. За ней следует узкая зона перехода в область рекомбинации. В случае течения с незначительной степенью диссоциации, по данным авторов работы [376], переходная область имеет небольшие размеры. [c.122]

    Кг04 определяется концентрацией N02, температурой и давлением газа. При уменьшении скорости рекомбинации N0 вследствие замораживания энергии на химических степенях свободы температура падает. В определенных условиях падение температуры может сдвинуть равновесие первой стадии в сторону образования N204 так, что концентрация N204 в неравновесном потоке окажется выше замороженной концентрации. [c.179]

    В этом можно убедиться путем анализа зависимости удельных объемов кристалла, жидкости и стекла от температуры (рис. 31). Характер изменения свойств жидкости при переходе ее в стеклообразное состояние объясняется следующим образом. По мере понижения температуры структура расплава непрерывно изменяется. При всех температурах >tg расплав успевает переходить в состояние,соответствующее минимуму свободной энергии при данной температуре. Дальнейшее понижение температуры приводит к уменьшению подвижности частиц из-за нарастания вязкости и увеличению времени релаксации структуры. Ниже скорость установления структурного равновесия становится настолько малой, что расплав не успевает релаксировать к своему метастабнльному состоянию. Происходит замораживание структуры, свойственной ей при более высоких температурах. При рассмотрении свойств некоторых стекол используют понятие фиктивной температуры. Она соответствует той температуре, при которой пересекаются кривые изменения объема стекла и переох- [c.124]

    Из выведенного ими уравнения, связывающего прочность дисперсного тела с диаметром частиц, следует, что при неизменной плотности упаковки частиц увеличение их размера с повышением температуры выдержки геля должно приводить к возрастанию его прочности. Так как плотность упачовки геля при замораживании определяется достижением равновесия между силами сжатия и структурной прочностью, то для старевшего геля, обладающего большей механической прочностью по сравнению с менее старевшим, равновесие будет достигнуто при меньшей плотности упаковки. Последнее обстоятельство и обусловливает образование более крупнопористого образца. [c.51]

    НИЮ к сумме оксиметиленгидратов большой молекулярной массы (см. рис. 28). Задача была решена благодаря найденным условиям замораживания подвижного равновесия между метиленглико-лем и более сложными ассоциатами — температура 0°С, pH 4,75, быстрое разведение раствора до концентрации формальдегида 0,2—0,4%. В этих условиях обеспечивается количественное определение метиленгликоля традиционным бисульфитным методом. [c.85]

    Существование НЖМФ в замороженных растворах обнаруживается физическими методами, в частности, по характеру спектров ЯМР растворенных веществ [23, 24] или спектров ЭПР спиновых зондов [25-27]. Состав НЖМФ для систем, где не протекают никакие реакции, после достижения термодинамического равновесия инвариантен и не зависит от способа замораживания [c.72]

    Кажутся удивительными высокие концентрации натрия вокруг клетки, а калия внутри ее, так как оба катиона могут диффундировать через стенки клеток. Результатом такой естественной диффузии натрия внутрь клеток, а калия —наружу должна быть тенденция к уравниванию концентраций каждого катиона внутри и снаружи клеток. Такой эффект действительно имеет место, но ему препятствует обратный процесс, называемый натрий-калиевым ионным насосом , который заключается в оттягивании каждого из этих катионов из областей низких концентраций в области высоких концентраций. Если этот насос прекращает действовать, что бывает следствием сильного ожога или замораживания ферментов, участвующих в его работе, например при замораживании тканей во время операций или при хранении сосудов для переливания крови при низких температурах, то устанавливается доннановское мембранное равновесие. При отогревании ионный насос начинает действовать вновь, и опять устанавливается обычный дисбаланс ионов. Работа ионного насоса зависит от координационной химии катионов натрия и калия [7, 8]. В общем случае известны две закономерности изменения констант устойчивости комплексов в ряду щелочных металлов а) Ы+> Ыа+>-К+>РЬ+>С5+ для комплексов с небольщими анионами простых слабых кислот, например гидроксильным ионом и ацетат-ионом б) Ы+< Ыа+< <К+<КЬ+<Сз+ для комплексов с крупными анионами сильных кислот, например нитрат- и сульфат-ионами. [c.280]

    Исследуемое вещество вводят в грушу 3 и дегазируют (замораживание—вакуумирование—размораживание). Поверн) изотенископ, переливают исследуемую жидкость в резервуар 1, где ее замораживают и куда перегоняют капли, оставшиеся в груше и трубках. В грушу заливают ртуть, дегазируют вещество в резервуаре и ртуть в груше до остаточного давления около 0,1 мм рт.ст. Переливают ртуть из груши в манометр 2 и устанавливают изотенископ в термостат. После этого присоединяют изотенископ через шлиф к системе с измерительным манометром. Систему вакуумируют и после установления равновесия компенсируют воздухом давление пара вещества в изотенископе. Катетометром измеряют уровень менисков ртути (вершин и оснований) в изотенископе и измерительном монометре. Вносят поправки на капиллярную депрессию ртути в трубках манометра, на ускорение свободного падения и температуру ртути в трубках манометра. Погрешность измерений давления составляет 0,1-0,2 мм рт. ст. [c.63]

    Следует отметить, что Глик и др. определили константу скорости реакции О + + N в интервале температур 2000—3000° К путем измерения количества окиси азота, образовавшейся за ударной волной при замораживании продуктов реакции волной разрежения. Обработка данных, как и в работе [1], велась в предположении, что существенными являются реакции (1), (2) и (3) и что концентрация атомарного кислорода определяется равновесием реакции (1), а стационарная концентрация атомарного азота равна нулю. [c.134]

    О большей устойчивости ацетилена при высоких температурах по сравнению с другими углеводородами свидетельствует его образование почти из любого углеводорода при температурах выше 1000°. Ниже 2000° эта устойчивость является случайной если горячий ацетилен не замораживается сразу после его образования, то он разлагается на углерод и водород. Однако при температурах выше приблизительно 2000° ацетилен находится в термодинамическом равновесии с углеродом и водородом и присутствует в такой системе в измеримых количествах. Многие исследователи указывали на присутствие ацетилена в системах, содержащих углерод и водород при высоких температурах. Принг [1] произвел количественный анализ газовых проб, отобранных из сосуда, содержащего водород, вблизи нагретого углеродного стержня. Однако его измерения, по существу, носят только качественный характер, так как он не принимал мер предосторожности для того, чтобы обеспечить быстрое замораживание горячих газов. [c.300]


Смотреть страницы где упоминается термин Равновесие замораживание: [c.148]    [c.396]    [c.153]    [c.601]    [c.99]    [c.132]    [c.190]    [c.73]    [c.159]    [c.189]    [c.319]    [c.132]    [c.184]   
Учебник общей химии 1963 (0) -- [ c.96 ]

Химия несовершенных кристаллов (1969) -- [ c.248 , c.262 , c.263 , c.341 ]




ПОИСК







© 2025 chem21.info Реклама на сайте