Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратации эффект

    Изменение растворимости с температурой определяется знаком и величиной теплового эффекта растворения. Температурную зависимость растворимости твердых веществ часто выражают графически, в виде кривых растворимости (рис. 43). Растворимость нитрата рубидия и хлората калия при нагревании от О до 100° С увеличивается в несколько раз. Подобные изменения растворимости в соответствии с принципом Ле Шателье характерны для веществ, процесс растворения которых протекает с поглощением тепла. Для сульфата иттербия теплота гидратации преобладает над теплотой разрушения кристаллической решетки его растворение экзотермично, поэтому растворимость с ростом тем- [c.146]


    С помощью термохимических расчетов можно определить энергию химических связей, энергию кристаллической решетки, энергию межмолекулярного взаимодействия, энтальпию растворения и сольватации (гидратации), энергетические эффекты фазовых превращений и т. д. [c.164]

    Неполная диссоциация молекул, взаимное притяжение ионов, их гидратация и другие эффекты влияют на различные свойства раствора. Суммарное влияние их на любое из термодинамических свойств может быть выражено через коэффициент активности электролита в данном растворе. Поэтому коэффициент активности и активность могут быть определены путем измерения различных свойств растворов температуры замерзания, температуры кипения, давления насыщенного пара, осмотического давления, электродвижущей силы (э. д. с.) гальванической цепи (см. ниже) и др. [c.395]

    Примером колонного реактора адиабатического тина с неподвижным слоем катализатора является реактор для синтеза этилового спирта прямой гидратацией этилена. Вследствие положительного теплового эффекта реакции темиература газового потока повышается при прохождении через реактор, однако она пе превышает допусти- [c.281]

    В заключение необходимо отметить, что многие другие анионы экстрагируются в органическую фазу вместе с определенным количеством сольватирующ,ей воды. Степень гидратации ионных пар зависит от аниона, катиона, растворителя, а также условий реакции. Проведены различные исследования этих эффектов (например, [68—70]). [c.36]

    Характерно, что А5 дальней гидратации для всех без исключения ионов — величина отрицательная, т. е. в этой области происходит уменьшение энтропии молекул воды и, следовательно, наблюдается только положительная гидратация —эффекты упорядочения здесь преобладают над эффектами разупорядочения. На абсолютное значение наиболее суш,ест-венное влияние оказывает заряд ионов и меньше — их размер, соответственно изменяются и числа молекул воды в области дальней гидратации. При использовании термохимического метода для водных растворов электролитов типа 1—1 установлено, что количества молекул воды в I и П областях дальней гидратации для стехиометрических смесей ионов равны 30 и 60 дериватографическим методом в первой области дальней гидратации определены числа молекул для одно-, двух- и трехзарядных катионов, они оказались равными 30, 60 и 90. [c.147]


    В некоторых случаях самодиффузия растворителя изменяется из-за гидратации (или вообще сольватации) растворенного вещества. Влияние эффекта гидратации эффект сольватации), можно отнести за счет того, что молекулы растворителя, находящиеся в гидратных оболочках, не принимают участия в самодиффузии, в результате чего уменьшается коэффициент самодиффузии. Кроме того, размер молекул растворенного вещества в результате гидратации увеличивается, что также увеличивает эффект препятствий и уменьшает коэффициент самодиффузии. Комбинированный результат этих двух эффектов, оказывающих влияние на коэффициент самодиффузии, по Уонгу [130] можно представить следующим образом  [c.272]

    Из анализа данных цитированных выше работ следует, что А дал , для всех без исключения ионов является величиной отрицательной. Это свидетельствует о том, что в области дальней гидратации мы имеем дело только с положительной гидратацией. Эффекты упорядочения здесь преобладают над эффектами разупорядочения. [c.199]

    Энергия гидратации в пересчете на моль равна сумме всех частных энергетических эффектов, т. е. [c.59]

    По общепринятым сейчас представлениям, истоки которых можно найти в работах И. А. Каблукова (1891), энергия, обеспечивающая разрыв связей в молекуле пли в решетке кристалла, а следо-вател[)Ио, и появление попов, выделяется в самом процессе электролитической диссоциации и представляет собой результат взаимодействия между растворяемым веществом и растворителем. Благодаря этому взаимодействию образуются комплексы, состоящие из молекул растворителя, т. е. сольватированные или, в случае водных растворов, гидратированные ионы. Энергетические эффекты, наблюдающиеся ири этом, были названы, по предложению Фаянса (1915), энергиями сольватации АОс. = ис) или, в водных средах, гидратации (—А0,.= 7г), а соответствующие тепловые эффекты — теплота-ми сольватации (—АНс= с.) и гидратации (—АЙг = ()г)- [c.47]

    Другим примером использования метода молекулярного щупа является исследование гидратации фосфатной группы нуклеозидов и нуклеотидов [149, 163]. В качестве гидратационной характеристики использовался эффект ионизации этой группы, наблюдаемый по скорости распространения ультразвука в растворе (изменения скорости ультразвука отражают изменения объема и сжимаемости при ионизации молекулы). На рис. 3.6 представлены схематические изображения исследо- [c.49]

    На рис. 3.8 показана температурная зависимость парциальной сжимаемости сахарозы как пример поведения молекул, содержащих большое число сближенных друг с другом атомных групп [185]. Одиночные полярные группы качественно отличаются от сближенных групп по действию на свойства воды. При этом под одиночной понимается атомная группа, удаленная от других полярных атомных групп на расстояние не менее четырех СНг-групп между ними. Термодинамические эффекты сближения полярных групп известны давно (см., например, [151, 152, 168]). Они учитываются при аддитивных расчетах парциального объема, теплоемкости, свободной энергии и энтальпии гидратации [168]. Наиболее ярко эти различия проявляются при изучении сжимаемости. В работе [161] проведен аддитивный анализ парциальной адиабатической сжимаемости аминокислот и спиртов и показано, что вклад в сжимаемость от одиночной полярной группы, во-первых, положителен и, во-вторых, его температурная зависимость имеет отрицательную первую и положительную вторую производную, — т. е. все названные величины противоположны по знаку тем же величинам для сближенных атомных групп (рис. 3.9). [c.55]

    Биополимеры. Существенная, при рассмотрении проблемы гидратации, особенность биополимеров состоит в наличии больщой и сложной по химическому составу молекулярной поверхности. Возникает вопрос не может ли такая поверхность в отличие от малых молекул оказывать на воду усиленное воздействие вследствие кооперативных эффектов Один из путей решения вопроса состоит в анализе аддитивности термодинамических гидратационных эффектов по атомному составу гидратируемой поверхности. Кооперативность проявилась бы в усилении гидратационного эффекта по сравнению с суммой вкладов поверхностных атомных групп, который подсчитывали на основании анализа низкомолекулярных соединений.  [c.58]

    Отметим еще одну особенность распределения (9.23). Как видно из (9.23) — (9.25), вклад поверхностных диполей в электрическое поле значителен при любой, в том числе нулевой (L = 0) степени гидратации. Это важное отличие нелокальной электростатики позволяет объяснить природу нового эффекта — структурной составляющей расклинивающего давления в фосфолипидных дисперсиях (см. ниже). [c.160]

    Другой метод исследования гидратации латексных частиц основан на измерении объемного или теплового эффекта фазового перехода при замораживании и плавлении водных дисперсий синтетических латексов. Поведение различных дисперсных систем при замораживании и существование в них незамерзающих межфазных прослоек воды изучается давно (обзор ранних работ см. в [I]). Исследования течения незамерзающих прослоек воды в кварцевых капиллярах [32, 329, 525] углубили представления о структурных изменениях граничных слоев воды, эффективная толщина которых имеет порядок 10 м и убывает с понижением температуры замораживания. [c.191]


    Теплота гидратации иона с меньшей ДЯ является определяющей,, вероятно, по следующей причине. Ее значение косвенно характеризуется числом пор, в которые могут войти ионы данного электролита. Ионы с теплотой гидратации ДЯм входят в поры, в которые не могут войти ионы с ДЯб. При этом они своим зарядом увлекают за собой противо-ионы, преодолевая их сопротивление этому процессу. Вместе с тем заряд иона с ДЯб в какой-то степени нейтрализован зарядом противоионов, окружающих его в растворе. Вероятно, поэтому он более подвержен действию поля иона с ДЯ . Внутри поры эффект частичной нейтрализации не действует, поэтому, если ион попадает в пору, то ему, по-видимому, ничего не помешает перейти через нее вместе с потоком [c.207]

    Воздействие ультразвука на электрохимические процессы, включающие и процессы электрохимической коррозии металлов, складывается из целого ряда эффектов 1) перемешивания, которое устраняет концентрационную поляризацию 2) активационного воздействия на реагирующие частицы и внедрения их в двойной электрический слой (изменение состояния ионных атмосфер и гидратации частиц, преимущественная ориентация ионов и молекул) 3) влияния на переход электронов (за счет возбуждения [c.368]

    Тепловой эффект реакции гидратации равен  [c.218]

    Разрушение кристаллической решетки на свободные ионы — процесс эндотермический (АЯрещ, > 0) гидратации ионов — процесс экзотермический (АЯгидр < 0). Таким образом, в зависимости от соотношения значений АЯр и АЯр др тепловой эффект растворения может иметь как положительное, так и отрицательное значение. Так, растворение кристаллического гидроксида калия сопровождается выделением теплоты, т. е. на разрушение кристаллической решетки КОН требуется меньше энергии (АЯреш = 790,5 кДж/моль), чем ее выделяется при гидратации ионов (АЯгидр.к+ [c.169]

    Процесс отмывки сопровождается сложными явлениями (диффузионными, тепловыми, эффектами гидратации и набухания), протекающими в фазе ионита. Их одновременное влияние способствует проявлению всех дефектов в ионите, возникших на предшествующих стадиях его получения. При жестком ведении процесса отмывки (большая скорость отмывки) дефекты могут возникать и на самой стадии отмывки. [c.372]

    Таким образом, основу процесса отмывки ионита составляет изменение физико-механических свойств его под воздействием проникновения растворителя в ионит, электростатических явлений (доннановского потенциала), явлений сольватации (гидратация) и тепловых эффектов. Существующие подходы к составлению математических модулей процесса имеют определенные недостатки (в моделях не отражена взаимосвязь релаксационных, диффузионных, тепловых, химических и др. явлений модели не охватывают весь интервал разбавления растворов и степени сшитости ионитов). [c.376]

    Эта диаграмма учитывает взаимосвязь при отмывке и отражает следующие особенности установление равновесия с учетом доннановского эффекта явление экранизации ионов и противоионов при гидратации и ослабление сил электрического притяжения, что способствует интенсивному набуханию в первоначальные моменты времени. [c.378]

    Рассмотренные эффекты могут иметь значение и для биофизики. В частности, поверхностные диполи фосфолипидных мембран могут оказывать влияние на электрогенные биофизические процессы, причем это влияние зависит от степени гидратации поверхности. Биологически активные ионы (например, Са +), как известно, способны менять степень гидратации фосфолипидной поверхности [430]. Возможно, регуляторная функция этих ионов связана с изменением структуры ДЭС в результате уменьшения степени гидратации поверхности под влиянием этих ионов. [c.160]

    Из табл. 1.10 видно, что для всех исследованных растворителей величина Д(2А5дальн) является отрицательной. Это обстоятельство свидетельствует о том, что в области дальней сольватации (гидратации) происходит положительная сольватация (гидратация). Эффекты структурирования растворителя под действием ионов в этой области сольватации преобладают. Кроме того, рассматриваемый эффект [c.249]

    Второй эффект, принятый во внимание Уэббом, связан с явлением электрострикции, т, е, сжатия, наблюдаемого при растворении, В результате электрострикции объем раствора становится меньше, чем сумма объемов чистого растворителя и растворенного вещества. На процесс сжатия расходуется некоторое количество энергии. Учет обоих эффектов приводит к тому, что величины энергий и теплот гидратации, вычисленные по формуле Борна — Уэбба, уменьшаются и приближаются к опытным, В теории Уэбба растворитель по-прежнему рассматривается ка ч непрерывная среда и не учитывается ни строение его молекул, пн структура жидкости. [c.56]

    Значение АЯ .идр можно рассчитать, используя известные значения энтальпии других процессов. Так, растворение ионного соединения можно представить в виде двух стадий разрушение кристаллической решетки на свободные ионы и гидратация ионов. Тогда, согласно закону Гесса, тепловой эффект (энтальпию) растворения ДЯрастй можно представить в виде алгебраической суммы энергии (энтальпии) разрушения кристаллической решетки АЯр . , и энтальпии гидратации ионов ДЯгид .  [c.168]

    Изменение концентрации неорганической соли в водном слое вплоть до насыщения ( 6 М) не влияло на степень гидратации и тем самым на реакционную способность экстраги рувмых анионов. Однако в присутствии 60%-ного КОН или 50%-ного NaOH скорости становились такими же, как и в гомогенной реакции в безводных условиях, а сами скорости увеличивались в 13, 4, 2,6 и 1,4 раза для С1-, N3 , Вг- и 1 соответственно. Этот эффект не наблюдался при использовании менее концентрированных растворов щелочи или насыщенного раствора NaF, [98]. [c.51]

    В работе [149] измерялись также объемные эффекты ионизации и изменения сжимаемости. Таким образом, взаимовлияние атомных групп нуклеотидов и нуклеозидов на гидратацию проявляется на расстояниях 0,6—0,8 нм между вандерваальсо-выми поверхностями групп, что соответствует двум-трем слоям молекул воды, т. е. менее чем двум слоям в гидратной оболочке. [c.50]

    Интерес к гидратации неполярных соединений связан, прежде всего, с особой ролью, которую играют гидрофобные эффекты в организации биологических молекулярных и надмолеку- [c.55]

    Следует подчеркнуть, что эффект разрушающе-структури-рующего влияния ионов на ГС должен зависеть от концентрации ионов вторичная гидратация наиболее ярко проявляется при достаточно высоких константах комплексообразования и вдали от изоэлектрической точки, а также на поверхностях, активные группы которых не способны (или обладают слабой способностью) образовывать водородные связи с молекулами воды. Приведенные выше возможные механизмы влияния ионов на ГС необходимо учитывать при рассмотрении устойчивости конкретных дисперсных систем. [c.173]

    Снижение К с ростом концентрации электролита обусловлено двумя факторами прогрессирующим разрушением и утонь-шением гидратных (незамерзающих) прослоек воды под влиянием электролита и уменьшением удельной поверхности дисперсной фазы латекса вследствие агрегации частиц. При концентрации Na l более 0,5 кмоль/м латекс при замораживании коагулирует и эффект гидратации (незамерзающей воды) исчезает. [c.193]

    Явление гидратации (и общем случае, сольватации) заключается в том, что ионы растворенного вещества окружены растворителем и движутся с некоторой его частью, вступающей с ним во взаимодействие. Различают первичную (ближнюю) и вторичную (дальнюю) гидратации. Первичная гидратация заключается в прочном связывании ионов молекул воды, вплоть до образования донорно-акцепторных связей. Вторичная— представляет собой электростатическое взаимодействие молекул поды с первично гидратированными ионами. Энергетический эффект гидратации довольно значителен и составляет примерно 300— 4000 кДж/моль. Значения теплот ЛЯ и координационных чисел п гидратации отдельных ионов при бесконечном разбавления и 25°С приведены ниже  [c.202]

    Для получения металлических катализаторов на носителях требуется восстановление окислов или солей газом (водородом, парами спирта) либо восстанавливающим раствором. В первом случае через катализатор, предварительно прокаленный для перевода солей в окислы, пропускают газ-восстановитель при повышенной температуре. Очень часто процесс восстановления ведут непосредственно в реакторе. Примером металлических катализаторов на носителе, восстанавливаемых из солей растворами, являются платиновые катализаторы на окиси алюминия и па силикагеле. Для восстановления соединений платины используют аммиачный раствор формальдегида [19 ]. При приготовлении платино-силикагелевого и аналогичных катализаторов надо иметь в виду, что неносредственная пропитка геля раствором часто приводит к растрескиванию геля. Причина этого, вероятно, кроется в возникновении при быстрой гидратации внутренних напряжений в геле, аналогичных возникаюнщм во время ускоренной дегидратации, или в более простом эффекте за счет давления сжимаемого в капиллярах зерна воздуха. Для устранения растрескивания гель перед пропиткой насыщают водой, пропуская через него сильно увлажненный воздух [16]. [c.184]

    Для расчета ДЯр по экспериментальным данным иужно знать энергию кристаллической решетки 11а и теплоту растворения ДЯр. Процесс растворения соли можно мысленно разбить на две стадии разрушение кристаллической решетки на ионы, сопровождающееся поглощением теплоты, равной i7o, и гидратацию, в результате которой выделяется теплота ДЯг. Очевидно, тепловой эффект растворения соли равен алгебраической сумме этих величин  [c.157]

    Здесь, как и прежде, параметром Г-элемента служит эффектив ный коэффициент массоотдачи к. Особенностью диаграммного отображения условий равновесия является включение Г-элемента, который одновременно используется для обозначения дополнительного сопротивления массоотдаче, выражающегося в уменьшении движущей силы процесса на величину Сп оМ. Таким образом, в символах диаграмм отображается условие равновесия с учетом явления гидратации в системе. Этот Т-элемент можно интерпретировать как обратную связь, характеризующую воздействие химического превращения сополимера на проводимость сплошной среды. Вероятностной жесткостью обратной связи является число гидратации ге, которое, согласно (371, может изменяться от 4 до 9. [c.349]

    Здесь Кг — константа реакции гидратации V — объем жидко й сферы ДЯ = ДЯ (Снгзо.) — тепловой эффект разбавления. [c.381]

    Таким образом, из анализа физико-химических особенностей отмывки ионитов видно, что для этой стадии характерно одновременное проявление диффузионных, тепловых, электрических явлений, явлений гидратации и реологических изменений в материале ионита. Существующие математические модели построены в основном для описания процессов ионного обмена, т. е. для процессов эксплуатации ионита как готового подукта, и не отражают явлений гидратации при смешении жидких фаз они не учитывают одновременного влияния диффузионных, электрических, тепловых явлений, эффектов гидратации и изменения реологических свойств материала ионита. [c.394]

    В проточном реакторе в газо-жидкостной системе при атмосферном давлении проводится реакция гидратации пропена в пропанол-2. Катализатор — серная кислота. Определить тепловой эффект реакции при Г=298 К. Для эквимолярной смеси исходных веществ превращение равно 60%. Определить превращение пропена, если тепловой эффект реакции равен ДЯ= —13000 Дж/моль. [c.278]


Смотреть страницы где упоминается термин Гидратации эффект: [c.81]    [c.486]    [c.158]    [c.728]    [c.218]    [c.212]    [c.60]    [c.61]    [c.238]    [c.175]    [c.384]    [c.71]   
Инфракрасные спектры неорганических и координационных соединений (1966) -- [ c.200 ]




ПОИСК







© 2025 chem21.info Реклама на сайте