Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы хроматографического разделения хлорид-ионом

    Хроматографическое разделение ионов натрия и калия методом вытеснения проводят в колонках, в которые помещают катионит КУ-2 в Н-форме (с содержанием дивинилбензола от 2 до 16%). В качестве вытесняющего раствора применяют 0,1 н. раствор соляной кислоты. Взвещивают 10 г смолы КУ-2 (в пересчете на сухое вещество) в Н-форме, заливают в стакане водой и переносят в калиброванную хроматографическую колонку. Спускают воду до верхнего уровня смолы. В верхнюю часть осторожно вносят 3 мл раствора, содержащего 100 мг смеси хлоридов калия и натрия (в расчете на К" "- и Ма -ионы в эквимолекулярных отношениях). Этот раствор пропускают через сорбент со скоростью [c.93]


    Использование в газохроматографическом анализе галогенидов металлов расплавленных нелетучих неорганических солей и их эвтектик [31, 32] сразу же резко увеличило возможности метода. Применяя неорганиче- ские соли в качестве неподвижной фазы, можно работать при значительно более высоких температурах. Кроме того, насадка не реагирует с анализируемыми веществами, особенно если соли содержат те же ионы, что и хроматографируемые соединения. Однако, как показано в работе [38], эффективность таких колонок ниже эффективности колонок с обычными жидкими фазами. К тому же обмен ионов в колонке наряду с окислительно-восстановительными реакциями может усложнить хроматографическое разделение. Для анализа хлоридов нельзя использовать нитраты, поскольку они сильные окислители и разлагаются в присутствии хлоридов. [c.135]

    Элюирование поглощенных ионов из анионитов может производиться щелочными, нейтральными или кислыми растворами, например, едким натром, карбонатом натрия, хлоридом натрия или со.ляной кислотой. Если не преследуется цель хроматографического разделения ионов во время элюирования, то обычно применяют концентрированные (1М И.ЛИ выше) растворы. Чем мельче зерна анионита, тем быстрее протекает регенерация. Нормальная скорость протекания при регенерации 2—5 мл1 см мин). В тех случаях, когда происходит выделение газа, регенерацию ионита лучше производить статическим методом, так как пузырьки газа приводят к каналообразованию в колонке. Это относится к анионитам, содержащим, например, карбонаты, сульфиды и сульфиты [11 ]. [c.171]

    При выборе электролита для промывного раствора нужно иметь в виду два обстоятельства 1) Электролит промывного раствора не должен мешать аналитическому определению исследуемых ионов в фильтрате. Например, для хроматографического разделения смеси хлорида, бромида и иодида хорошим реагентом является нитрат натрия, потому что он не мешает титрованию галогенидов нитратом серебра (или иодометрическому определению иодид-иона) [1]. Для разделения смеси щелочных металлов применяют соляную кислоту, поскольку они определяются методом пламенной фотометрии или титрованием хлорид-иона нитратом серебра после выпаривания досуха. В последнем случае нужно вводить поправку на соосаждение соляной кислоты галогенидами щелочных металлов. 2) Сродство обмениваемого иона промывного раствора к смоле не должно слишком сильно отличаться от сродства к смоле ионов разделяемой смеси. Если отношение коэффициентов селективности исследуемого иона к обмениваемому иону промывного раствора слишком велико, то для проведения опыта потребуется очень большой объем промывного раствора или высокая его концентрация. Если оно достаточно мало, то это приведет к малым значениям (7 и С, т. е. к неблагоприятным условиям для разделения. Применение же разбавленных промывных растворов влечет за собой грубое нарушение второго допущения теории тарелок (разд. В.П этой главы), что приводит к получению асимметричных выходных кривых, к которым теория тарелок неприменима. [c.159]


    Для устранения влияния первой группы ионов широко используют методы предварительного разделения. Так, в анализе сточных вод часто применяют окислители или реагенты, образующие с мешающими ионами труднорастворимые или слабо-диссоциированные соединения. Эффективны и методы дистилляции, что было показано на примере определения хлорид-ионов в присутствии иодида и бромида. Разделить с достаточной точностью различные фосфорсодержащие анионы или смесь галогенидов, оксигалогенидов и псевдогалогенидов можно хроматографическим методом. Для разделения металлов успешно применяют экстракцию. Нивелировать мешающее влияние ионов, снижающих активность потенциалопределяющего иона за счет образования с ним химических соединений, удается введением в анализируемый раствор комплексообразователей, связывающих мешающий ион в комплекс более прочный, чем комплекс этого иона с определяемым. [c.53]

    Одноколоночный метод позволяет осуществить быстрое разделение анионов, причем отсутствие компенсационной колонки никогда не затрудняет анализа. На рис. 5.2 приведен пример хроматографического разделения четырех анионов на колонке с анионообменной смолой емкостью 0,007 мэкв-г-. Смесь элюировали 1,0-10- М фталатом калия при pH 7,1. Хлорид, нитрат, тиоцианат и иодид появляются после ложного пика (происхождение которого обсуждается ниже). На рис. 5.3 приведен пример быстрого разделения хлорида, нитрата и сульфата. Емкость смолы составляет 0,04 мэкв-г-, а в качестве элюента пользовались 5,0-10— М фталата калия при pH 6,2. Если провести анализ пяти образцов, содержащих постоянное количество ионов хлора и нитрата. [c.106]

    ПАР и ПАН-2 использованы для обнаружения Сс1, Си, РЬ и 2п [877] при хроматографическом разделении на бумаге, ПАР и ПАН-2 — для обнаружения В1, Сё, Со, Си, Мп, N1, РЬ, У(У), и(У1) [736] и 2п (ПАН-2) [658] при их разделении методом тонкослойной хроматографии. При анализе воды и лекарственных препаратов ионы Сё, Со, Си, Hg, N1, РЬ и 2п разделяют на катионообменных бумагах Амберлит 5А-2 или У А-2 , а затем обнаруживают при помощи ПАН-2 или ПАР [97]. Фуимото [637] отмечал, что сорбирование ионов смолами, а затем обнаружение при помощи ПАН-2 или ПАР понижает предел обнаружения В], Hg(И), N1, Рс1, Т1(П1) и У(1У, V) до рО < 8,7, в то время как без сорбции рО = 6,5—7,0 рВ — отрицательное значение логарифма предельного разбавления). Пиридиновые азосоединения широко применяются в качестве проявителей в тонкослойной хроматографии. Используют пластинки с гипофосфитом циркония [704] (разделяют и обнаруживают с помощью ПАН-2 лантан и иттрий), силикагелем [879] (разделяют и обнаруживают Со, Си, N1 с помощью ПАН-2), с целлюлозой МЫ-ЗОО-НК и силикагелем [736] (разделяют В , Сс1, Со, Си, Мп, N1, РЬ, У(У) и и(У1), подвижный растворитель СН3СОСН3—1-СЭН7ОН—СНзСООН—НС —НаО, проявитель — ПАН-2 или ПАР). На пластинках Силуфол на основе силикагеля [646] разделяют Со, Си, Ре, N1 и затем обнаруживают с помощью ПАН-2. Метод применяют для определения элементов в нитратах бария и стронция, хлоридах кальция, аммония и гидрокарбонате аммония. На целлюлозе МЫ-ЗОО-НК, пропитанной хлороформным раствором анионообменника — хлоргидрата Прайамина 1М-Т, отделяют цинк и обнаруживают его реагентом ПАН-2 [658]. Разработан метод обнаружения РО4 , В1, 5Ь, Н 2,6-диамино-З-фенилазо-пиридином [687]. [c.184]

    Поэтому при необходимости определения в воздухе, воде или почве ионов (нитраты, хлориды, сульфаты, цианиды и др.) идеальным методом их анализа является сочетание хроматографического разделения с последующим детектированием (обнаружением, определением) соединений элюата с помощью кондуктометрии (или кулономентрии). Первый из этих способов щироко применяется в ВЭЖХ и ее варианте — ионной хроматографии (см. главу II), особенно при анализе вод (природные и [c.370]

    Для определения химических форм элементов используют все инструментальные методы, обеспечивающие необходимые пределы обнаружения элементов. Для ряда элементов, главным образом, неметаллов, разработаны и применяются в практике анализа для оценки качества природных, питьевых и сточных вод методы определения как суммарных содержаний, так и различных молекулярных и ионных форм. Панример, для серы предусматривается раздельное определение сульфат-, сульфид-, сульфит- и тиосульфат-ионов [9 - 10]. При оценке содержания фосфора также раздельно определяют полифосфаты, эфиры фосфорной кислоты и растворенные ортофосфаты [9 - 10]. Содержание азота в водах характеризуется главным образом концентрацией свободного аммиака и ионов аммония, а также нитрит- и нитрат-ионов, аналогичная ситуация для пары хлорид-свободный хлор [9 - 10]. Для раздельного определения химических форм азота, фосфора, серы, хлора и других широко применяют спек-трофото-метрические методы анализа, а также различные варианты хроматографии ионной, жидкостной, газовой [9 - 10]. Определение химических форм металлов - более сложная задача, для решения которой требуются высокочувствительные инструментальные методы, обеспечивающие возможность онределения на более низком уровне концентраций, чем их реальные содержания в водах, т.е. на уровне от 1 мкг/л до 1 нг/л. В сочетании с хроматографическими методами разделения эти методы выполняют роль детекторов. Наиболее предпочтителен вариант элемент-селективного детектора, к которым и относятся большинство современных инструментальных методов (ААС, АЭС, МС), в отличие от снектро-фотометрического и электрохимических. [c.25]


    Бромид можно отделить, используя возможности различных хроматографических методов, включая и ионный обмен. Методы подробно обсуждаются в разделе Хлориды . Фоти [1] изучал содержание бромида в морской воде, используя метод ионного обмена с применением радиоактивных индикаторов. Для выделения бромида использовали и метод дистилляционного разделения. Свободный бром может быть выделен из кислых растворов бромидов при использовании жестких окислительных условий. Используют выделение брома в виде цианбромида, который затем поглощается раствором NaOH. Таким методом отделяли 5— 20 ррт бромида от почти 1000 ррт хлорида. Методом определения была потенциометрия. Общее время, необходимое для приготовления образца, отделения и определения, составляет 15 мин, точность метода 0,1 ррт, чувствительность — 0,5 ррт. [c.263]

    Смеси ионов щелочных и щелочноземельных металлов наиболее эффективно разделяют методом хроматографии на неорганических ионообменниках, таких, как фосфат и вольфрамат циркония. Коэффициенты распределения этих ионов между ионообменником и раствором различаются между собой так сильно, что для успешного проведения хроматографического разделения необходимо по мере вымывания каждого из ионов увеличивать концентрацию промывного раствора. Хорошо известны ранние работы Крауса с сотрудниками, в которых из колонки с вольфра-матом циркония литий был вымыт 0,05 М раствором хлорида аммония, натрий 0,1 М, калий 0,5 М, рубидий 1,0 и цезий 3,0 М растворами хлорида аммония [1] на колонке с молибдатом циркония кальций, стронций, барий и радий были разделены слегка подкисленными растворами хлорида аммония с концентрациями соответственно 0,2, 0,5, 1,0 и 4,0 М [21 (рис. 36). Аналогичное эазделение на молибдате циркония было выполнено Кемпбеллом 3] сначала ионы магния были вымыты сульфатом аммония, ионы кальция, стронция и бария вымывались затем нитратом аммония. [c.195]

    Мышьяк (П1) эффективно поглощается сильноосновным анионитом из концентрированной соляной кислоты [45 ] и поэтому может быть легко отделен от мышьяка (V) и от фосфора (V). Это разделение, как и отделение Аз (V) от Ое (IV), было исследовано Иошино [67]. Мышьяк (III) не поглощается анионитом из разбавленной плавиковой кислоты, тогда как германий и галлий удерживаются ионитом. На этом принципе основан метод выделения радиоактивного мышьяка без носителя [53]. Мышьяковистая кислота гораздо более слабая кислота, чем мышьяковая, благодаря чему они могут быть разделены с помощью слабоосновного анионита. Ионит поглощает только мышьяковую кислоту [3 ]. О хроматографическом отделении мышьяка (III + V) от фосфатов с применением сильноосновного анионпта сообщают Бруно и Беллуко [5]. Мышьяк элюируется 0,001Ж НС1, после чего раствором хлорида натрия элюируется фосфат-ион. [c.395]

    Однако попытка использовать методику разделения обменивающихся форм, описанную американскими химиками [79] для соответствующих хлоридных комплексов, в данном случае оказалась безуспешной. Речь идет о невозможности разделять галоген-ион и диаммин с помощью азотнокислого серебра ввиду того, что AgNOg осаждает также и комплексный Вг". Безуспешной также оказалась попытка применить хроматографические методы разделения. Мы хотели отделить диамминдибромид платины от Вг", используя свойство смол ие поглощать нейтральные молекулы комплексов. К удивлению мы обнаружили, что активный диамминдибромид в известной степени задерживался на смоле А В-17. Такой же результат несколько раньше был получен Гринбергом и Никольской на хлоридах, в частности па соли Пейроне [80]. [c.197]


Смотреть страницы где упоминается термин Методы хроматографического разделения хлорид-ионом: [c.276]    [c.126]    [c.38]    [c.102]    [c.55]    [c.151]   
Аналитическая химия алюминия (1971) -- [ c.185 ]




ПОИСК





Смотрите так же термины и статьи:

Иониты разделение ионов

Методы разделения

Методы хроматографические

Методы хроматографического разделения

Разделение ионитами

Хлорид-ионы

Хлориды хроматографическое

Хроматографический метод разделения ионов



© 2024 chem21.info Реклама на сайте