Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммоний галогениды нитрат

    Исследователями была изучена проводимость разбавленных растворов в разных растворителях солей щелочных металлов — галогенидов [109], перхлоратов [ПО], галогенидов, калия, аммония, бария, нитрата, натрия и хлорида бария [111]. [c.19]

    Методами ионной хроматографии определяют очень многие анионы в питьевой и технической воде, в продуктах технологической переработки в пищевой, фармацевтической и других отраслях промышленности. Известны методики определения галогенидов, нитрата, нитрита, сульфата, ацетата и т. д., всего свыше 70 анионов неорганических и органических кислот. Число катионов значительно меньше. Методами ионной хроматографии определяют главным образом катионы щелочных и щелочно-земельных металлов, а также органические катионы замещенных солей аммония. Определение многих других катионов оказывается ненадежным, так как они выпадают в осадок в компенсационной колонке с сильноосновной смолой. Ионная хроматография успешно применяется в анализе объектов окружающей среды (атмосферы, воды и т. д.), в клинических исследованиях и многих отраслях промышленности. [c.359]


    Такая перегруппировка в кольце наблюдается для бензильных и других аналогичных четвертичных галогенидов аммония [40] под влиянием амида натрия и растворителя, которым служит жид кий аммиак. Реакция ускоряется в присутствии небольшого количества нитрата железа(1П) при температуре жидкого аммиака. [c.573]

    Галогениды. Растворяют 2,0 г испытуемого вещества в 25 мл раствора гидроксида калия в этаноле ИР1 и нагревают в колбе с об(ратным холодильником в течение 2 ч. Выпаривают этанол в струе теплого воздуха, добавляют 20 мл воды и охлаждают. Добавляют смесь 10 мл пероксида водорода ( 330 г/л) ИР и 40 мл воды, осторожно кипятят в течение 10 мин, охлаждают и быстро фильтруют. Добавляют 10 мл азотной кислоты — 130 г/л) ИР и 5 мл раствора нитрата серебра (0,1 моль/л) ТР и титруют раствором тиоционата аммония (0,1 моль/л) ТР, используя в качестве индикатора раствор железа аммония сульфата (45 г/л) ИР. Повторяют процедуру, но без испытуемого вещества. Разница между результатами титрований не должна превышать [c.113]

    В качестве стандартных растворов для определения галогенидов, цианидов и роданидов применяют нитрат или перхлорат окисной ртути, а для определения ионов хорошо диссоциирующих солей ртути—роданид аммония. [c.250]

    В работе [24] приведены результаты детальных исследований влияния различных анионов и катионов на интенсивность аналитических линий алюминия, олова, свинца, никеля, меди, железа, кремния и цинка. Смесь оксидов разбавляли угольным порошком до концентраций 0,015—0,05% и к пробе добавляли различные соединения в количестве 10% в расчете на катион. Всего изучено влияние 40 соединений карбонатов, нитратов, сульфатов, галогенидов и оксидов. Для катионов (калий, литий, барий, кальций, магний, серебро, медь, цинк и аммоний) интервал энергий ионизации-—от 4,3 до 14 эВ. Подготовленные пробы испаряли из канала угольного электрода диаметром 2 и глубиной 5 мм в дуге переменного тока силой 10 А. Об эффекте влияния судили по разности почернений аналитических линий и фона. [c.111]

    Примечание. Данным методом можно определить фториды в присутствии галогенидов и нитратов щелочных металлов и аммония, а также ацетата аммония и борной кислоты. Аналогично титруют фтор-ион при анализе силикатных пород (методика № 61). [c.77]

    Агаровый мостик можно приготовить и другим способом растворяют 3—5 г порошкообразного агара в 100 см раствора нитрата калия или аммония (2 моль/дм ). Такой солевой мостик обычно применяют для того, чтобы свести к минимуму диффузионный потенциал. Его используют с растворами галогенидов во время титрования нитратом серебра. [c.184]


    Из неорганических соединений, в жидком аммиаке растворимы главным образом соли аммония и щелочных металлов (нитраты, нитриты, перхлораты, тиоцианаты), нитраты щелочноземельных металлов, хлориды, бромиды, иодиды и нитрат серебра, сероводород и некоторые другие соединения (табл. 3). Причем в отличие от растворимости в воде растворимость галогенидов серебра и щелочных металлов в жидком аммиаке изменяется в следующем порядке иодиды>бромиды>хлориды>фториды. [c.77]

    В качестве стандартных растворов используют для определения Ag -ионов — роданид аммония для определения галогенидов и других анионов — нитрат серебра и роданид аммония. [c.304]

    В некоторых случаях полиморфный переход связан с вращением групп атомов в кристаллической структуре, которое начинается после достижения определенной температуры. Это явление можно наблюдать как в ионных, так и в молекулярных структурах. Примером такого рода изменений в ионных кристаллах могут служить полиморфные превращения некоторых нитратов или галогенидов аммония. Нитрат натрия, кристаллизующийся при [c.236]

    Растворимость солей в воде определяется разностью между энергией кристаллической решетки соли и энергией гидратации ионов. Это малая разность двух больших величин пока не может быть рассчитана теоретически с хорошей точностью. Поэтому химику-неорганику приходится руководствоваться эмпирическими закономерностями. Так, почти все соли щелочных металлов и аммония хорошо растворимы в воде. Хорошо растворимы нитраты, галогениды (кроме галогенидов серебра, ртути, свинца и таллия) и сульфаты (кроме сульфатов щелочноземельных металлов и свинца). Для переходных металлов характерна небольшая растворимость их сульфидов, фосфатов, карбонатов и некоторых других солей, а также их гидроксидов. [c.252]

    Натрий, растворенный в жидком аммиаке, разрушает многие органические соединения, в частности галогенсодержащие с образованием галогенидов (включая фторид) [6.157, 6.158]. Пробу массой 100—400 мг растворяют в 50 мл жидкого аммиака и вносят небольшие кусочки натрия до появления голубой окраски раствора. Избыток натрия удаляют с помощью нитрата аммония или после испарения аммиака остаток растворяют в спирте галогениды определяют обычными методами [6.159]. Вещества, которые мало растворяются в жидком аммиаке, сначала растворяют в толуоле, затем тщательно перемешивают с жидким аммиаком до получения эмульсии [6.157]. [c.288]

    В число соединений, термохимические характеристики которых приведены в табл. 2, включены галогениды, перхлораты и нитраты щелочных металлов и аммония, хлориды и перхлораты щелочноземельных металлов, пикраты натрия, лития, калия и аммония, сульфаты цезия и рубидия, хлористый водород. Такой выбор определялся как большой практической важностью этих соединений, так и намерением рассмотреть термохимические характеристики соединений в различных растворителях, имея в виду наличие данных по АН растворения именно этих соединений в неводных растворителях. [c.181]

    При взаимодействии родамина 6Ж с сернокислыми растворами фторидных комплексов тантала образуются соединения, бензольные экстракты которых люминесцируют желтым светом [8]. Оптимальные условия выполнения реакции 10 н. H2SO4, 2,5% раствор KF, 3,3% раствор оксалата аммония, раствор родамина 6Ж и экстракция бензолом. Открываемый минимум — 0,02 мкг/мл. Мешают определению ионы бора, платины, галогениды, нитраты. [c.316]

    Плотности растворов галогенидов некоторых щелочных металлов и галогенидов аммония в жидком аммиаке определены при различных температурах и концентрациях 99,100 Джонсон и Мартенс показали, что плотность раствора из леняется линейно с изменением температуры, и кажущийся мольный объем V является линейной функцией (в моль л). Эта закономерность аналогична полученной для водных растворов. Позже Ганн и Грин определили кажущийся мольный объем нескольких электролитов в жидком, аммиаке при 0° С и обнаружили, что формы кривых, выражающих зависимость кажущегося мольного объема V от с , весьма схожи для галогени-дов некоторых щелочных металлов, галогенидов аммония и нитрата бария. Правило аддитивности ионов соблюдается даже при концентрациях, при которых можно было бы ожидать образования значительного количества ионных пар. Экстраполяцией, используя вычисленные константы ассоциации, Ганн и Грин получили приведенные ниже значения мольных объемов некоторых солей в жидком аммиаке при бесконечном разбавлении (для сравнения приведены мольные объемы тех же солей в воде) [c.11]


    Большинство солей — сильные электролиты. Среди растворимых солей слабыми электролитами являются хлорид, бромид и иодид кадмия Сс1С12, С(1Вг2, СёЬ хлорид двухвалентной ртути Н С12 (иодид и бромид двухвалентной ртути не растворимы в воде), ацетат свинца РЬ(СНзСОО)г, роданид железа Ре(5СМ)з. В противоположность галогенидам нитрат и сульфат кадмия, нитрат и сульфат ртути — сильные электролиты. Соли, образованные слабыми кислотами и сильными основаниями (например ацетат натрия СНзСООЫа), и соли, образованные слабыми основаниями и сильными кислотами (например хлорид аммония N1 401), распадаются полностью на ионы так же, как соли, образованные сильными кислотами и сильными основаниями. [c.16]

    Например, галогениды аммония МН Г, существующие при низких температурах в виде кристаллов типа СзС1 (к. ч. = 8), при нагревании перестраивают структуру по типу ЫаС1 (к. ч. = 6). Для некоторых веществ наблюдается несколько полиморфных превращений. При обычном давлении нитрат аммония МН4НОз существует в пяти кристаллических формах, точки перехода между которыми лежат в пределах от -18 до 125 [c.124]

    Безводные B.(V), в т. ч пиро- и ортованадаты мн. металлов, получают спеканием их оксидов, карбонатов или нитратов с V2O5 или NH4VO3 в атмосфере кислорода. В. тяжелых металлов, а также AI и нек-рых др. осаждают из р-ров В. щелочных металлов или аммония при добавлении р-римой в воде соли металла. Метаванадаты щел.-зем. металлов, Мп и др. образуются при кипячении суспензии гидроксидов, галогенидов или карбонатов металлов с [c.348]

    Бесцветный газ, при комнатной температуре под избыточным давлением сжи> жается жидкий аммиак — бесцветный, твердый аммиак — белый. Хорошо растворяется в воде, образует гидрат КН Н]0. раствор имеет слабощелочную среду. Разбавленные растворы аммиака (3—10 /о-й КНэ) называют нашатырным спиртом, концентрированные растворы (18.5—25%-й КНз) —аммиачной водой. Весьма реакционноспособен, склонен к реакциям присоединения. Сгорает в кислороде, реагируете кислотами, металлами, галогенами, оксидами и галогенидами. Качественная реакция — почернение бумажки, смоченной раствором HgJ(NOJ)I (образование ртути). Осушают аммиак оксидом кальция. Жидкий аммиак — осибвный протонный растворитель хорошо растворяет серу, галогениды (кроме фторидов) и нитраты щелочных металлов, галогениды аммония, перманганат калия плохорастворяет неорганические фториды, сульфаты, карбонаты. Получение см. 31. 272. 275 283  [c.138]

    В качестве рабочих растворов используют для определепия Ag -иoпoв - тиоциапат аммония (калия), для онределения галогенидов и других анионов - нитрат серебра и тиоцианат аммония (калия). В последнем случае определяемый компопепт осаждают точно измеренным избытком раствора нитрата серебра с последующим титрованием избытка серебра раствором тиоцианата калия или аммония (обратное титорванпе). [c.38]

    Электроды, селективные к кальцию, обратимы но отношению к этому иону и реагируют па ион ка льция с высокой чувствительностью. Титруют кальцпй комплексонами с этим электродом при pH 10 [1541]. Определению не мешают щелочные металлы [1632], а также катионы аммония и анионы галогенидов, цианиды, рода-виды, ферроцианиды, нитраты, нитриты, сульфаты, хроматы, перхлораты, бикарбонаты и арсенаты. Катионы Ва, М и Zn количественно титруются вместе с кальцием. Мешают фосфаты, карбонаты, оксалаты. При pH 12 кальций можно титровать в присутствии магния [1004]. [c.73]

    С галогенидами многих металлов калий реагирует аналогично натрию, но более энергично Многие органические и неорганические соедине ния, содержащие н и т р о г р у п п у," например нитрат аммония, пикриновая кислота, нитробензол, будучи нечувствительны к удару сами по себе, стано вятся чрезвычайно взрывоопасными в присутствии даже следов калия или калий натриевого сплава Сплав калий-натрий Сплав содержит 50—85% (по массе) калия, температура его плавления ниже комнатной Химическая активность сплава аналогична активности калия, однако в обращении он еще опаснее Будучи жидким при комнатной температуре, сплав вступает с реагентами в более тесный контакт, чем твердый металл, поэтому реакции идут еще энергичнее При контакте с воздухом сплав немедленно вое пламеняется, так как легко вытекает из оксидной плен ки, обнажая свежую поверхность металла Смесь сплава с твердым диоксидом углерода в 40 раз более чувствительна к удару по сравнению с гремучей ртутью Не рекомендуется использовать сплав для восстановления металлов из галогенидов в тех слу чаях, когда соль хорошо растворима в используемом растворителе (например, Zn b или РеС1з в тетра гидрофуране), поскольку реакция может быть слишком бурной [c.244]

    Одно из явлений, наблюдаемых при промывании осадка, находящегося в виде флоккулированного коллоида, например какого-либо галогенида серебра, называется репептизацией. Оно состоит в том, что иногда, когда для промывания используется чистая вода, флоккулированные частицы снова приобретают свой первоначальный дзета-потенциал и диспергируются. Для предотвращения репептизации чаще всего пользуются простым средством — промывают осадок разбавленным раствором электролита (например, азотной кислоты или нитрата аммония), который при прокаливании способен улетучиваться. [c.179]

    Для определения галогенидов в растворах, содержащих мешающие органические вещества, представляют интерес простые анионо-обменные методы. Типичным примером является определение хлора в сульфитном щелоке [117 ]. Хлор-ионы поглощают сильноосповным анионитом в КОд-форме. Мешающие неэлектролиты, нолиэлектро-литы и слабые кислоты оказываются в вытекающем растворе. После промывания водой хлор-ион извлекают из колонки с помощью 5 М раствора нитрата аммония. Ионы тиосульфата и политионата мешают потенциометрическому определению хлора с помощью нитрата серебра и поэтому должны быть перед титрованием удалены окислением перекисью водорода. [c.246]

    Реакция алюмогидрида лития с олефином протекает не очень активно в том случае, если комплексный гидрид металла очень чистый, а температура реакции ниже температуры разложения гидрида. Большие выходы литийалюминийтетраалкила могут быть получены, если реакцию вести в инертном растворителе при температуре 50—120° в присутствии приблизительно 5 вес.% катализатора Фриделя — Крафтса, таких, как хлористый алюминий, хлористый цинк или хлорное железо [117]. Эта реакция катализируется также веществами, не относящимися к классу катализаторов Фриделя — Крафтса, т. е. галогенидами, сульфатами, нитратами, карбонатами, цианидами и фосфатами аммония и металлов I и II групп периодической системы [185]. [c.161]

    Возможность эффективной экстракционной очистки, проводимой в целях препаративного получения чистых веществ, можно иллюстрировать следуюпщми двумя примерами. Нитраты щелочноземельных элементов, которые затем переводили в окислы, очищали при помощи дитизона от нримесей Си, РЬ, N1, Со. Очищенные растворы обрабатывали карбонатом аммония, осадки промывали, высушивали и прокаливали [792]. Галогениды щелочных металлов, а также нитрат натрия и хлорид кальция последовательно очищали раствором дитизона в СС14 при pH 7,0—7,5, затем раствором 8-оксихинолина в том же растворителе при pH 5—6. Растворы освобождались при этом от Ге, Мп, Си, Со, N1. Окончательная очистка проводилась хроматографическим методом [793]. [c.236]

    Потенциометрическое титрование сульфидов нитратом серебра при низких содержаниях сульфидов неосуществимо из-за их гидролиза и образования гидроксида серебра. Применяя плюмбат(П) натрия в качестве титранта, можно определить до 1 ррт сульфидов в присутствии 10 —10 -кратного избытка хлоридов, бромидов, иодидов, сульфитов, тиосульфатов или тноцианатов. Цианид при определении сульфидов описываемым методом должен отсутствовать [69]. Соли свнпца(П) предложено использовать как титрант при автоматическом потенциометрическом титровании нанограммовых количеств сульфидов [70]. Стандартное отклонение определений составляет 2% (при уровне содержания сульфидов 90 нг). Определению сульфидов этим методом не мешают галогениды, ацетат, сульфат, цианид, нитрат, фосфат и ионы аммония. Описываемый метод использован для определения серы в органических соединениях [71]. После сожжения образца серу восстанавливают в токе водорода над платиновым катализатором при 900°С и образующийся сероводород поглощают в специальном сосуде. Автоматически титруют сульфиды стандартным раствором свинца(II) с фиксацией конечной точки сульфидным ионоселек-тивным электродом. [c.575]

    Следует отметить, что все эти авторы [29, 30] получали на аноде титруемый ион Н+ и что они использовали мембрану с избирательной проницаемостью только во избежание потерь гидроксильных или водородных ионов из анолита. Однако Хансельман и Роджерс [31] работали с совершенно другими ионообменными мембранами при кулонометрическом титровании нитрата серебра раствором галогенидов. Они помещали образец с нитратом серебра в анодное пространство, в котором находился перхлорат натрия или нафталинсульфонат натрия в качестве вспомогательного электролита и инертный электрод. Католитом служил раствор гало-генида натрия растворы разделялись анионообменной мембраной. В идеальном случае при прохождении электрического тока на каждую фараду электричества через мембрану в анолит должен пройти один эквивалент галогенидного аниона. Это соответствует 100%-ному выходу по току. Наблюдаемый выход по току колеблется между 96,0% и 97,6%, если католитом будет 0,5 М раствор хлорида натрия. Низкие результаты являются следствием несовершенной избирательной проницаемости мембраны, т. е. некоторая часть тока проводится через мембрану катионами. Когда католитом служит 0,5 М раствор иодида натрия, выход по току составляет 50,5—62,7%. По-видимому, ионы иодида образуют ионные пары со связанными четвертичными ионами аммония [c.282]

    Метод Жоба требует значительных затрат времени на химико-аналитические измерения. Во многих случаях необходимые сведения намного быстрее и элегантнее можно получить с помощью разработанного нами метода (кондуктометрического экстракционного титрования). По этому методу предполагается, что коэффициент распределения для экстрагируемого катиона достаточно велик и при экстракции из разбавленных растворов (0,1 моль1л) и что экстракция катиона вызывает вполне измеримое изменение электропроводности в органической фазе. Техническое исполнение является очень простым. В высокий стеклянный сосуд на 100 мл вносят водную фазу (10—20 мл) сточно известным количеством экстрагируемого элемента, приливают органический растворитель, сильно перемешивают для установления равновесия и после отстаивания измеряют электропроводность органической фазы. Затем из бюретки прибавляют водный раствор галогенида известной концентрации после каждого добавления путем перемешивания устанавливают равновесие распределения и измеряют электропроводность органической фазы. По изменению полученных значений в зависимости от увеличивающейся добавки галогенида можно получить данные о составе соединений, образующихся в органической фазе. На рис. 6, 7 и 8 представлены такие измерения для систем нитрат железа (III)—роданид аммония, хлорид мышьяка (III)—йодид лития и нитрат ртути (II)—йодид лития. [c.325]

    При измерениях концентрации ионов серебра, ртути и галогенидов нельзя пользоваться насыщенным солевым мостиком, так как ионы хлора будут диффундировать в раствор, подлежащий измерению. Приме 1яют специальные приспособления для предотвращения диффузии соли в раствор. При потенциометрическом титровании с серебряныл или ртутным электродом, где диффузионный потенциал 10 имеет особенно существенного значения, можно упо -чреблять солевые мостики из нитрата калия, сульфата калия, или нитрата аммония (в виде их геля в З-прод. а1-аре). [c.118]


Смотреть страницы где упоминается термин Аммоний галогениды нитрат: [c.506]    [c.236]    [c.252]    [c.96]    [c.480]    [c.587]    [c.110]    [c.509]    [c.84]    [c.72]    [c.213]    [c.486]    [c.313]    [c.236]    [c.344]    [c.486]    [c.67]    [c.11]   
Физическая химия Книга 2 (1962) -- [ c.509 ]




ПОИСК





Смотрите так же термины и статьи:

Аммоний нитрат



© 2024 chem21.info Реклама на сайте