Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устройство ввода пробы системы

    Метод ввода пробы с делением потока был первым, разработанным в капиллярной газовой хроматографии [7]. Обычное устройство ввода пробы с делением потока представляет собой испаритель. Пробка жидкости, введенная с помощью шприца, мгновенно испаряется, и небольшая часть парообразной пробы поступает в колонку. Основная же часть пробы выводится из системы. Использование делителя потока гарантирует получение узких зон пробы на входе в колонку. [c.31]


    На рис. 3-42 представлена схема устройства ввода пробы с программированием температуры испарителя. Система состоит из стеклянного вкладыша длиной 5-8 см (внешний диаметр 0,2 см, внутренний диаметр 0,1 см), заполненного силанизированной стекловатой. Вкладыш закреплен в металлическом корпусе таким образом, чтобы препятствовать попаданию газа-носителя из нижней части. Капиллярная колонка вводится во вкладыш на глубину 0,5-0,8 см. [c.62]

    Достоверность величин удерживания в хроматографии зависит от того, насколько воспроизводима работа всей хроматографической системы. Влияние характеристик прибора на воспроизводимость времени удерживания определяется суммой дисперсий за счет отдельных систем прибора устройства ввода пробы faj, системы управления и устройства вывода данных (оз)  [c.67]

    В качестве меры оценки работы хроматографической системы и/или "указателя" на неисправность в том или ином узле хроматографической системы (устройстве ввода пробы, колонке, детекторе, блоке обработки сигнала) можно использовать многие параметры. Информация, получаемая при использовании каждого из этих параметров, либо дублируется, либо перекрывается и служит подтверждением существования неисправности. Поэтому для более точного выявления неисправности рекомендуется проводить оценку как можно большего числа параметров, характеризующих работу хроматографической системы. [c.97]

    Система, реализующая принципы электрофоретического разделения включает кварцевый капилляр, источник высокого напряжения, устройство ввода пробы, детектор и систему вывода информации (рис. 4.2.1). [c.343]

    При использовании нескольких колонок, каждая из которых имеет свою собственную неподвижную фазу, прежде всего возможен такой вариант газохроматографической системы, в котором каждая из колонок имеет свое собственное устройство ввода пробы и свой детектор, т. е. фактически в одном термостате находится несколько хроматографов. Однако такое устройство из-за необходимости применения нескольких детекторов и термостата с относительно большим объемом стоит слишком дорого. Значительно упрощенный вариант такой системы, [c.273]

    Система ввода пробы посредством шприца через самоуплотняющуюся резиновую прокладку аналогична применяющейся в газовой хроматографии. Однако при высоких давлениях такие устройства начинают давать течь. Поэтому в установках для жидкостной хроматографии в уплотняющей резину гайке делается отверстие, соответствующее диаметру иглы шприца. В этом случае резиновая прокладка выдерживает значительно большее давление. Главным достоинством ввода пробы посредством шприца является возможность подачи пробы непосредственно на насадку, что существенно уменьшает первоначальное размывание зоны вещества. Шприц позволяет легко регулировать объем вводимой пробы. Наконец, этот способ весьма прост в конструктивном отношении. Однако при достаточно высоких давлениях способ становится непригодным, так как проба через неплотности в поршне шприца может проникать в обратном направлении. [c.84]


    Пользуясь свойством аддитивности размывания в отдельных частях хроматографической системы (в устройстве ввода пробы, колонке, переключателях, соединительных линиях, детекторе), можно рассчитать общую дисперсию зоны анализируемого вещества  [c.23]

    Основные аналитические возможности газохроматографической установки определяются параметрами системы детектирования, термостатирования колоночной системы и детектора и устройством ввода пробы. [c.105]

    Кроме системы детектирования, основные аналитические возможности прибора определяют также параметры термостатирования колоночной системы и детектора, устройство ввода пробы и другие факторы. [c.109]

    Аналитический блок БА-110. Служит для размещения термостата колонок, элементов управления жидкостными потоками, устройства для ввода пробы и системы измерения электропроводности. На передней его панели размещаются штуцер ввода элюента, штуцер ввода регенерирующего раствора, ручка устройства ввода пробы при дозировании микрошприцем штуцер ввода пробы при дозировании петлей крана отверстие для вывода капилляра, по которому сливаются излишки пробы при петлевом дозировании. На задней панели расположены штуцеры сброса элюента и регенерирующего раствора. Внутри аналитического блока размещен термостат колонок и кондуктометрическая ячейка, предназначенная для измерения электропроводности проходящего через нее раствора. Напряжение, подводимое к электродам, составляет 0,5 В. Кондуктометрическая ячейка связана с блоком измерения электропроводности, который является частью кондуктометрического детектора и находится в блоке БА-110. [c.199]

    Схема устройства для ввода пробы в поток элюента посредством специального крана приведена на рис. П.7. Вся система, состоящая из двух кранов 7 и 5 и емкостей <3 и 4, присоединяется к верхней части хроматографической колонки. Сначала поток элюента под давлением поступает через кран 1, емкость 3 и кран 5 (положение а на рис. П.7) в колонку. В это время по трубке 2 сосуд 4 заполняется пробой вещества. Затем краны / и 5 переключаются в положение б. При этом поток элюента переносит пробу из сосуда [c.84]

    Хроматограф состоит из последовательно соединенных осушительной системы, пиролитической ячейки 4, вмонтированной в корпус термостата хроматографа, испарительной камеры ввода пробы 5. хроматографической колонки 6, установленной в термостате, детектора 7. Детектирующее устройство работает по принципу ионизации органических молекул в водородном пламени и носит название пламенно-ионизационного детектора (ПИД). Пламя создается при равномерном горении смеси водорода и воздуха, подаваемой из баллонов 2 и 3 форсунке в требуемом соотношении, которое регулируется расходомерами по показаниям манометров. Водородно-воздушная смесь поджигается высокочастотным электрическим разрядом. [c.249]

    Обычно для обогрева и поддержания постоянства температуры в блоке ввода проб и системы детектирования используют металлические термоблоки, нагреваемые электроспиралью. В литературе описаны различные способы и устройства для поддержания температуры в блоке колонок масляные и водяные термостаты, пропускание тока непосредственно через стенку колонки, электрически обогреваемый металлический блок, воздушные термостаты. Из всех систем наибольшее распространение получили воздушные термостаты с режимом принудительной циркуляции воздуха высокоскоростным вентилятором. [c.91]

    На рис. 3-12 представлена схема подсоединения устройства ввода без деления потока с обдувом мембраны. Разводка газовых линий в этом устройстве аналогична используемой при делении потока. Для того чтобы избежать загрязнений в системе, мембрана постоянно обдувается потоком газа (2 мл/мин). При этом объемная скорость газа на выходе из делителя составляет 20-50 мл/мин (рис. 3-12,в). Неносредственно перед вводом пробы соленоидный вентиль переводят в такое положение, чтобы линия деления потока была закрыта, а обдув мембраны при этом продолжался. На рис. 3.12,6 приведена разводка потоков при вводе [c.38]

    Система непосредственного ввода пробы в колонку была в дальнейшем усовершенствована [33, 34]. На основании устройства ввода, расположенного в термостате хроматографа, была установлена система дополнительного вторичного охлаждения. Поток воздуха вводится через кожух, окружающий капиллярную колонку на входе, и направляется в ту область, куда поступает проба. Использование вторичного охлаждения устраняет дискриминацию компонентов пробы, обусловленную шприцем. Более того, наличие вторичного охлаждения позволяет проводить анализ при температуре колонки, превышающей температуру кипения растворителя. Начальная часть колонки охлаждена до такой степени, чтобы избежать испарения растворителя. Использование игл из плавленого кварца внутренним диаметром 0,14-0,18 мм позволило осуществлять непосредственный ввод пробы в колонки диаметром 0,22-0,25 мм. Эти иглы также в высокой степени инертны. Ири непосредственном вводе пробы в узкие капиллярные колонки диаметр канала, через который осуществляется ввод иглы, составляет 0,2 мм (рис. 3-24). Дополнительным преимуществом непосредственного ввода пробы является отсутствие мембран, используемых при вводе проб как с делением, так и без деления потока. [c.48]


    Большинство описанных систем было разработано для проведения высокоэффективных разделений, т. е. анализов с использованием капиллярных колонок диаметром 0,22-0,32 мм. Очевидно, что эти системы можно применять и в сочетании с широкими капиллярными колонками (внутренний диаметр 0,53 мм), причем конструкция узла ввода пробы в последнем случае будет существенно проще. Ири вводе пробы в широкую капиллярную колонку можно использовать стандартные иглы внешним диаметром 0,47 мм (калибр 26), что допускает применение обычных газохроматографических мембран. В работе [44] описано простое самодельное устройство для холодного ввода пробы непосредственно в колонку. Для использования в автоматическом режиме узел ввода (рис. 3-25) снабжен дисковой мембраной. Стальную иглу калибра 26 можно использовать для ввода пробы в капиллярную колонку диаметром 530 мкм [45]. [c.50]

    В работах [3, 38, 39] описано перемещающееся устройство для Иеносредственного ввода пробы в колонку, применяемое в высокотемпературной капиллярной газовой хроматографии. Узел ввода южпо перемещать вверх и вниз но стенке термостата. В верхнем [сложении начальная часть колонки расположена вне термостата, поэтому ввод пробы можно проводить при комнатной температуре. Растворитель испаряется, а высококипящие компоненты улавливаются в холодной начальной части колонки. После полного элюирования растворителя, которое можно контролировать с помощью пламенно-ионизационного детектора, устройство ввода пускают вниз. В результате этого начальная часть колонки попадает в термостат и при температуре термостата происходит анализ пробы. Основным преимуществом такого устройства является то, что холодный ввод пробы непосредственно в колонку можно проводить при высоких температурах термостата. По существу принцип действия этого устройства аналогичен используемому в твердофазном устройстве ввода пробы [42]. Перемещающееся устройство ввода пробы было также разработано Дженнингсом [41]. Недавно описано автоматическое устройство непосредственного ввода пробы в колонку, применяемое при высокой температуре термостата [42]. Получены прекрасные результаты при определении липидов. Система вторичного охлаждения [33, 34] позволяет поддерживать температуру 60°С на входе в колонку нри температуре термостата 300°С. Для обеспечения автоматической работы к аналитической колонке подсоединена короткая предколонка. [c.49]

    В НИХ ВХОДЯТ система подачи подвижной фазы в колонку, устройство ввода пробы, разделительная колонка и система обнаружения разделенных компонентов. В ГХ важным является также наличие термостата, в котором размещается колонка, и отдельных термо-статируемых пространств для системы ввода и детектора. Чрезвычайно быстрое соверщенствование приборов для ГХ и ЖХ привело к тому, что в настоящее время сформировалась самостоятельная область приборостроения, задачей которой является разработка приборов для хроматографии. Целью данной главы отнюдь не является подробное рассмотрение современного уровня оснащенности хроматографии, мы лишь хотели бы обратить внимание читателя на те аспекты этой проблемы, которые важны при разделении энантиомеров. Для более детального ознакомления с хроматографическими приборами читателю следует обратиться к обстоятельной работе Поля и Шутте (см. список литературы к данной главе). [c.51]

    За рубежом существует микрометод определения давления насыщенных паров топлив (ASTM D 2551 в США, IP 171 в Англии). Устройство для определения давления насыщенных паров включает ртутный манометр, систему заглушек и стеклянный испытательный сосуд, заключенный в водяную рубашку. Испытательный сосуд соединен с вакуумом, с манометром и имеет отверстие для ввода пробы образца, закрываемое заглушкой. Перед испытанием из системы удаляют воздух в бане - устанавливают требуемую для испытания температуру. Записывают начальное давление в системе, после чего ртутной пипеткой вводят 1 мл испытуемого топлива. После достижения равновесия в системе при заданной температуре замеряют давление. Давление насыщенных паров рассчитывают как разницу показаний манометра после испытания и до него. Результаты параллельных определений не должны различаться более чем на 0,5 кПа (4 мм рт. ст.). Воспроизводимость метода 2 кПа (15 мм рт. ст.). [c.30]

    Хим. р-ции проводят в хроматографич, системе (в спец. микрореакторе или устройстве для ввода пробы, хроматографич. колонке, детекторе) или вне ее для улучшения разделения в-в, понижения предела их обнаружения, повышения селективности и т. д. Напр., для определения микроколичеств Ве и нек-рых др. элементов в лунной пыли и лунной породе пробы обрабатывали таким образом, что образовывались летучие и достаточно стабильные трифтор-ацетилацетонаты металлов, к-рые затем с высокой чувствительностью и селективностью анализировали методами газовой хроматографии. Превращение орг. к-т в их неполярные бензиловые эфиры не только приводит к существенному улучшению характеристик газохроматографич. анализа (получаются симметричные пики, улучшается разделение и т.д.), но и к значит, понижению пределов обнаружения. [c.216]

    Больн1ую трудность при работе с гидролизующимися соединениями представляет ввод пробы в хроматограф. Для га юоб-ра.чных веществ некоторых гидридов была использована система напуска [139]. Обычный способ ивода с помощью шприца неприемлем, так как продукты гидролиза мгновенно забивают иглу и вызывают коррозию порпшя. Применение растворителя трудностей пе снимает. Иногда для защиты иглы на нес надевают пробку иа СИЛИК01ЮВ0Й резины [133]. Наиболее удобным считают ампульное устройство. [c.173]

    Если колонку часто называют сердцем хроматографии, то стадию ввода пробы в колонку можно с некоторыми оговорками назвать ахиллесовой пятой". Это высказывание Преториуса [1] отражает тот факт, что ввод пробы в капиллярной хроматографии имеет нервостененное значение. Функционирование системы ввода пробы определяет успешную работу всей хроматографической (Системы. Проведенные в последние годы исследования обеспечили существенное углубление наших представлений о явлениях, происходящих при вводе пробы в колонку. Были разработаны различные режимы ввода пробы. Необходимость иснользования различныых вариантов ввода обусловлена, во-нервых, тем, что хроматографирование определяется множеством параметров колонки, нанример ее внутренним диаметром, толщиной нленки НФ, емкостью колонки, видом и линейной скоростью газа-носителя. Во-вторых, Современная капиллярная газовая хроматография позволяет анализировать соединения различной летучести и термической устойчивости в широком интервале концентраций. "Универсальный" оптимальный вариант ввода пробы в капиллярную колонку до сих нор не разработан, и сомнительно, чтобы такой вариант существовал в принципе. Дженкинс и Дженнингс [2] считают, что в настоящее время не существует и в будущем вряд ли появится устройство или методика, пригодная для ввода любых соединений в любых словиях. "Универсальной системы ввода пробы до сих нор нет и, но-видимому, никогда не будет" [3]. [c.30]

    Использование автоматических систем ввода жидкой пробы в хроматограф позволяет существенно снизить дисперсию величин удерживания на стадии ввода пробы. Отклонение величин удерживания, обусловленное несовершенством электроники системы программирования температуры термостата, чрезвычайно мало (мерее 0,005 мин) и нрактически постоянно. Таким образом, роль этого фактора пренебрежимо мала. Незначительна также и дисперсия величины удерживания за счет устройства вывода данных (электрометра, детектора, интегратора и т. д.). Таким обратом, основным источником погрешности при онределении времени удерживания является система управления. Наибольшее влияние на воспроизводимость хроматографических данных оказывают пневматическая часть системы управления и регулятор темнературы термостата. Неудачная конструкция пневматического регулятора может привести к изменению линейной скорости нотока через колонку. Наиболее устойчивая линейная скорость нотока через колонку достигается нри исиользовании регулятора с электронной обратной связью. [c.67]

    Для определения тиофена в тяжелых фракциях нефти и сырых нефтях может быть использована специальным образом модифицированная ГХ-система с узлом предварительного фракционирования, подсоединенным к стандартному устройству ввода с делением потока [10]. На рис. 8-8 приведена схема крана-переключателя, используемого в этом анализе. Проба вводится через устройство ввода узла предварительного фракционирования в короткую предколонку с НФ OV-101. На этой иредколонке происходит разделение компонентов в соответствии с их температурами кипения. Во избежание попадания тяжелых фракций нефти (Сао) в капиллярную колонку кран-переключатель устроен таким образом, чтобы обеспечить продувку и сброс тяжелых фракций. Легкие фракции нефти попадают в аналитическую колонку, где происходит дальнейшее разделение и идентификация смеси. На рис. 8-9 приведена типичная хроматограмма сырья, поступающего на гидроочистку. Анализируемая фракция содержит 1,5 масс.% серы. Использование высокоэффективных капиллярных колонок сводит к минимуму совместное элюирование углеводородов, содержащихся в большом количестве, и серусодержащих соединений. В результате такого совместного элюирования может наблюдаться гашение сигнала ПФД. По сравнению с ПИД ПФД обладает превосходной чувствительностью к серусодержащим соединениям и селективен к ним (рис. 8-10). Вследствие нелинейности сигнала ПФД к сере количественное определение серы проводится с помощью многоуровневой градуировки. Градуировочные кривые для некоторых тиофенов представлены на рис. 8-11. [c.112]


Смотреть страницы где упоминается термин Устройство ввода пробы системы: [c.659]    [c.123]    [c.411]    [c.95]    [c.482]    [c.63]    [c.467]    [c.16]    [c.197]    [c.266]    [c.51]    [c.51]   
Высокоэффективная газовая хроматография (1993) -- [ c.61 , c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Система ввода пробы

Устройство для ввода пробы



© 2025 chem21.info Реклама на сайте