Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал специфической адсорбции

    По Штерну, заряд слоя Гельмгольца складывается из заряда иоиов, адсорбированных как за счет электростатического адсорбционного потенциала / гср, так и за счет потенциала специфической адсорбции Ф. Было предположено, что поверхность имеет определенное число адсорбционных центров, каждый из которых взаи- [c.60]

    В 2 будет дана математическая постановка задачи, в 3, 4 рассмотрено влияние на фотоэмиссионный ток г ) -потенциала, специфической адсорбции анионов и катионов, а также адсорбции органических молекул с длинной углеводородной цепью. Проведенное далее сравнение теории с экспериментом иллюстрирует возможности фотоэмиссионного метода исследования структуры двойного слоя. Наконец, в 5 рассмотрен вопрос о роли неоднородности поверхности электрода и найдена зависимость фототока от степени покрытия поверхности адсорбатом. При этом ряд полученных результатов может быть обобщен на более широкий класс электронных переходов. [c.26]


    Если к тому же исключить специфическую адсорбцию иоиов, то все еще сохраняется скачок потенциала, обусловленный ориентационной адсорбцией полярных молекул  [c.29]

Рис. XX, 6. Распределение потенциала при перезарядке поверхности вследствие сильной специфической адсорбции анионов. Рис. XX, 6. <a href="/info/511334">Распределение потенциала</a> при <a href="/info/10688">перезарядке поверхности</a> вследствие <a href="/info/356086">сильной</a> <a href="/info/3661">специфической адсорбции</a> анионов.
    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]

    Эффект специфической адсорбции наблюдается и на незаряженной поверхности металла, т. е. в тех условиях, когда обмен ионами между металлом и раствором отсутствует. Адсорбированные ионы и соответствующие противоионы образуют двойной электрический слой, расположенный в непосредственной близости к металлу со стороны раствора. Ориентированные около поверхности металла адсорбированные полярные молекулы (ПАВ, растворителя) также создают двойной электрический слой. Скачок потенциала, отвечающий двойному электрическому слою при незаряженной поверхности металла, называется потенциалом нулевого заряда (п. н. 3.). Его значение принято выражать по водородной шкале (табл. 26).  [c.475]


    Перенапряжение перехода возникает тогда, когда наиболее медленной стадией электродного процесса является собственно электрохимическая реакция (разряд, ионизация). Основы теории перенапряжения перехода в 1930—1940 гг. были предложены М. Фольмером, Т. Эрдей-Грузом, А. Н. Фрумкиным и другими в применении к процессу выделения водорода в более поздних работах была дана общая теория этого вида перенапряжения. Теория Фольмера и Эрдей-Гру-за разработана для концентрированных растворов электролитов при отсутствии специфической адсорбции поверхностно-активных веществ на электродах. Она основана на общих положениях химической кинетики, устанавливающих зависимость между скоростью реакции и энергией активации. Однако для электрохимических процессов следует учитывать зависимость энергии активации от потенциала электрода. Рассмотрим теорию перенапряжения перехода в применении к катодной реакции Ох + ге" Red. Скорость этой реакции равна разности скоростей прямой реакции восстановления и обратной — окисления. Скорость каждой из них описывает уравнение [c.505]

    Двойной электрический слой может возникнуть также в результате адсорбции поверхностно-активных веществ. При специфической адсорбции полярные молекулы определенным образом ориентируются на поверхности металла и возникает адсорбционный двойной электрический слой и соответствующий скачок потенциала. В водных растворах электролитов на поверхности металлов всегда имеется двойной электрический слой в результате адсорбции дипольных молекул воды. [c.300]

    Снижения высоты потенциального барьера, как видно нз формулы для определения расклинивающего давления, можно достичь либо увеличением концентрации ионов с в электролите и утонением диффузного слоя б у поверхности частиц (6=1/ ), либо уменьшением (нейтрализацией) потенциала поверхности г з1 в результате специфической адсорбции на ней потенциалопределяющих ионов. Поэтому прп воздействии электролитов на дисперсные системы говорят о концентрационной и нейтрализованной коагуляциях (рис. П1.3). [c.73]

    При введении поверхностно-активных веществ молекулярного типа вблизи потенциала незаряженной поверхности молекулы, обладающие специфической адсорбцией, внедряются в двойной электрический слой, увеличивая его толщину и снижая емкость. При потенциалах, достаточно удаленных от как в положительную, так и в отрицательную сторону, электростатические (кулоновские) силы превосходят силы адсорбции, поэтому молекулы поверхностно-активных веществ вытесняются с поверхности электрода и замещаются слоем ионов. В результате на кривой появляются максимумы емкости, по которым можно судить об области адсорбции поверхностно-активных веществ (потенциалы десорбции). [c.104]

    В отсутствие специфической адсорбции двойной слой можно уподобить плоскому конденсатору, одной обкладкой которого служит заряженная поверхность металла М, а другой -- эффективная граничная поверхность при Я. Между металлом и раствором создается скачок потенциала. Электрод обменивается катионами с раствором при любом установившемся скачке потенциала. Ток ионов из металла в раствор равен их току из раствора в металл и равнозначен токам электронов из раствора в металл и из металла в раствор. Силу этого тока, отнесенную к единица поверхности электрода, называют током обмена. Ток обмена считают стандартным /о при средней ионной активности раствора, равной единице (стр. 36). В различных системах /о = 10 —10 А/м . [c.129]

    Аналогичная картина наблюдается при специфической адсорбции катионов адсорбция идет в основном в области отрицательных зарядов и снижает электрокапиллярный максимум (см. рис. 42, кривая 2). Сверхэквивалентная адсорбция катионов в плоскости максимального приближения приводит к появлению дополнительного скачка потенциала Ч-фг (рис. 43,6) тогда фн з сместится влево, так как [c.70]

    II 1.4.12. Предполагая отсутствие специфической адсорбции противоионов и постоянство Фо, исследовать влияние концентрации электролита (2= 1) на потенциал г з. [c.68]

    При специфической и ориентированной адсорбции двойной электрический слой, в отличие от случая обмена ионами, целиком расположен внутри одной из фаз. Обмен ионами, специфическая и ориентированная адсорбции могут сопутствовать друг другу, что приводит к сложному строению двойного электрического слоя. Например, при одновременном обмене ионами и значительной специфической адсорбции возможна перезарядка поверхности с изменением знака г 3 -потенциала (рис. 12.3). Скачок потенциала между металлом и раствором называют абсолютным электродным потенциалом. [c.230]

    MOB и ионов, т. е. поляризуемость, возрастает с увеличением их размеров. Ввиду того, что размеры анионов значительно больше, чем катионов, поляризуемость их относительно больше. В этом ряд авторов, в частности Абрамсон, видит основную причину того, что отрицательный заряд поверхности твердых тел в жидкости встречается несравненно чаще, чем положительный. Следует обратить внимание на то, что адсорбция многовалентных ионов и образование заряда поверхности (специфическая адсорбция) могут происходить и на незаряженной поверхности. Для такого случая распределение зарядов и падение потенциала [c.39]


Рис. 19. Распределение зарядов (а) и падение потенциала (б) в двойном слое при наличии специфической адсорбции ионов. Рис. 19. <a href="/info/382553">Распределение зарядов</a> (а) и падение <a href="/info/3387">потенциала</a> (б) в <a href="/info/308044">двойном слое</a> при наличии <a href="/info/3661">специфической адсорбции</a> ионов.
    Количественные соотношения между зарядом и падением потенциала в двойном слое, учитывающие явление специфической адсорбции, и те дополнения в распределении зарядов, которые [c.40]

    Итак, метод измерения дифференциальной емкости позволяет определять п. н. 3., находить зависимость заряда поверхности от потенциала, а также рассчитывать величины адсорбции органического вещества и специфической адсорбции ионов в растворах с постоянной ионной силой. Метод применим как к жидким, так и к твердым электродам и является чрезвычайно чувствительным к любым изменениям в строении двойного электрического слоя. Последнее обстоятельство предъявляет очень высокие требования к чистоте исследуемых этим методом металлов и растворов. Существенным препятствием для использования метода измерения емкости является возможность протекания электрохимических реакций на границе электрод — раствор. [c.60]

    Равенство ф-потенциалов двух или нескольких металлов указывает на то, что ионные скачки потенциалов и заряды поверхности этих металлов примерно одинаковы. К такому же выводу можно прийти, если выразить ф-потенциал через соответствующие вольта-потенциалы. Знание ф-потенцналон позволяет поэтому сравнивать различные металлы в отношении fx зарядов, а также условий адсорбции на них поверхностно-актиЕЩых веществ. Если же в растворе присутствуют поверхностно-активные вещества, то изучение их адсорбции на различных электродах при одном и том же ф-потен-циале дает возможность выяснить особенности их специфической адсорбции на каждом данном электроде. [c.254]

    Теория Штерна дает качественно правильную картину двойного электрического слоя. Она широко используется при рассмотрении тех электрохимических явлений, в которых структура двойного слоя играет существенную роль. Но теория Штерна, как это отмечал сам автор, не свободна от мсдостатков. К их числу относятся невозможность количественного описания емкостных кривых — экспериментальные и расчетные кривые отклоняются друг от друга, особенно при удалении от потенциала нулевого заряда, несовместимость некоторых из ее основтых положений, например сохранение заряда в плотном слое при отсутствии специфической адсорбции, и т. д. [c.270]

    При наличии сильной специфической адсорбции ионов, происходящей под действием химических сил или сил Ван-дер-Ваальса, например адсорбции аниона на поверхности ртутного электрода, общий заряд ионов в плотном слое может оказаться больше заряда поверхности электрода. Такое явление называется перезарядкой поверхности. В этом случае потенциал на расстоянии ионного радуса от поверхности электрода (-ф -потенциал) имеет знак, противоположный знаку разности потенциалов между электродом и раствором. Распределение потенциала в двойном электрическом слое в этом случае схематически представлено на рис. XX, 6. [c.538]

    Штерн попытался учесть влияние специфической адсорбции на электрический потенциал, обусловленной действием ковалентных сил дополнительно к электростатическим силам. Так как радиус действия сил такой адсорбции соизмерим с размером ионов, это дает основание учитывать их только для иоиов, входящих в плотный слой Гельмгольца. Как видно из рис. И. 13, плотность поверхностного заряда противоионов можно разделить на две части плотность заряда обусловленного монопонным слоем, представляющим собой слой Гельмгольца, и плотность заряда диффузного слоя Гуи. Общая поверхностная плотность заряда двойного электрического слоя равна сумме поверхностиых плотностей зарядов плотного и диффузного слоев  [c.60]

    Поскольку теория Штерна учитывает наличие плотного адсорбционного слоя ионов, это позволяет выявить влияние их гидрата-цин на qr, а учет специфической адсорбции ионов дает возможность объяснить перезарядку поверхности ири наличии в растворе иротивоиона, обладающего большим адсорбционным потенциалом. Лучше адсорбируются и ближе подходят к поверхности менее гидратированные ионы, которые по этой причине значительнее компенсируют поверхностный потенциал, и их соответственно меньше будет в диффузном слое. [c.61]

    Специфическая адсорбция может вызвать и уменьшение С-но-тенциала, если специфически адсорбируются противоионы, так как они имеют заряд, противоположный заряду поверхностп. Такая адсорбция может привести к перезарядке поверхностп, т. е. к такому положению, когда потенциал диффузного слоя и -потенциал будут иметь знаки, противоположные знаку межфазного потенциала. Знач тельное влияние на -потенциал оказывает pH среды, поскольку ионы Н+ н ОН обладают высокой адсорбционной способностью. Особо велика роль pH среды в тех случаях, когда а контакте с водным раствором находится амфотерное вещество. Прн изменении кислотности среды можно перезарядить фазы. [c.219]

    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]

    В соответствии с теорией ДЛФО добавление эаектролнта в хяисперсную систему вызывает сжатие двойного электрического слоя у частиц, вследствие чего они могут подойти друг к другу на расстояния, на которых преобладают силы притяжения. Уменьшение толщины двойного слоя сопровождается обменом противоионов этого слоя на вызывающие коагуляцию ионы электролита, Сжатие двойного электрического слоя происходит как за счет уменьшения потенциала в результате специфической адсорбции нонов добавленного электролита на поверхности частиц, так и благодаря ограничению диффузии противоионов в раствор в связи увеличением ионной силы раствора. По преобладанию того нли иного механизма процесса коагуляции различают нейтрализаци-онную и концентрационную коагуляцию. Области преимущественного действия механизмов коагуляции можно оценить с помощью теории ДЛФО. [c.333]

    Сопоставляя соотношения (VI. 116), (VI. 117) и (VI. 119), можно сделать вывод, что в соответствии с теорией ДЛФО нейтрализационная коагуляция более характерна для систем с частицами, обладающими малым электрическим потенциалом. Особенно сказывается на коагуляции в таких системах специфическая адсорбция ионов добавляемого электролита, имеющих заряд, одноименный е зарядом противоионов двойного электрического слоя. Эти ионы, находясь в адсорбционном слое, резко снижают потенциал срд (VI. 117)—происходит нейтрализация фо-потенциала уже в адсорбционном слое. Так как при специфической адсорбции ионов возможна перезарядка поверхности частиц, то для нейтрализаци онной коагуляции характерна область между минимальной и максимальной концентрацией электролита. При введении электролита в количестве, превышающем некоторое максимальное значение, дисперсная система может перейти во вторую область устойчивости, в которой частицы будут иметь заряд, противоположный заряду частиц в первой области устойчивости. [c.335]

    Использование теории Гуи — Чэпмена в ее первоначальной форме пренебрегает такими моментами, как дискретность заряда иона, конечный радиус иона, местная диэлектрическая поляризация среды и т. д. Ясность по этому вопросу внесена Хейдоном (1964) и Снарнейем (1962). Наиболее важное уточнение учитывает специфическую адсорбцию противоинов по теории Штерна последующее уточнение проведено Вервеем и Овербеком (1948). Однако с точки зрения стабильности коллоидов адсорбция Штерна способствует уменьшению эффективного поверхностного потенциала, применяемого для вычисления энергии взаимодействия, которое в любом случае ограничено довольно малыми значениями. [c.98]

    Наряду с адсорбцией ионов, вызываемой электростатическими силами, может иметь место специфическая для каждого сорта частиц адсорбция, вызываемая силами Ван дер Ваальса или химическими силами. Проявление последних приводит к адсорбции ионов на одноименно заряженной поверхности, а также к адсорбции органических веществ молекулярного типа. При этом влияние анионов может наблюдаться не только на восходящей ветви электрокапиллярной кривой (электростатические силы), но и на нисходящей (химические силы). Аналогичный эффект оказывают катионы. Соответственно максимум электрокапиллярной кривой смещается в электроотрицательную (действие анионов) или электроположительную (действие катионов) сторону. Так как работа адсорбции положительна (процесс совершается самопроизвольно), поверхностная энергия адсорбента уменьшается, т. е. уменьшается а. В присутствии поверхностноактивных веществ молекулярного типа смещение максимума не наблюдается, но величина о заметно снижается. Смещение потенциала электрода в положительную или отрицательную сторону до значений, при которых электростатические силы начинают преобладать над силами специфической адсорбции, приводит к прекращению действия поверхностно-активных веществ, вследствие их вытеснения из двойного электрического слоя, и электрокапиллярная кривая сливается с кривой, полученной в отсутствие поверхностно-активных веществ. Соответствующие потенциалы называются положительным и отрицательным потенциалами десорбции (е .с и бдес) и ограничивают область потенциалов, внутри которой происходит адсорбция поверхностно-активных веществ (от бдес до бдес). [c.100]

    В растворах потенциалопределяющих ионов наблюдается сложная зависимость дзета-потенциала от концентрации. Избыток ионов в среде может привести к перемене зарядов и потенциалов двойного электрического слоя (ДЭС). Изменение потенциалов может произойти за счет специфической адсорбции. согласно правилу Фаянса. По этой причине с увеличением концентрации ионов значение С ПО-тенциала уменьшается, переходит изо- 3, распределение ио-электрическую точку, затем изменяет ццд падение потенциала знак заряда и снова увеличивается до в двойном электрпческом определенного предела. Для амфотерных при сверхэквивалент-веществ (А Оз, белки и др.) получены адсорбции [c.81]

    В результате способности дисперсной фазы к специфической адсорбции ионов и наличия скачка потенциала у межфазной границы частицы аэрозоля неодина- KOBO адсорбируют различные ионы и средний их заряд отличен от нуля. [c.346]

    На рис. 21 приведена зависимость Г+ и Г от потенциала при специфической адсорбции аниона. Как следует из сравнения рис. 16 и 21, зависимость Г от Е внешне остается такой же, как и для поверхностнонеактивных анионов. Однако величина Г здесь обращается в нуль не при п. н. 3., а при более отрицательных потенциалах. С другой стороны, форма Г+, -кривой существенно отличается от аналогичной кривой для поверхностно-неактивного электролита. [c.43]


Смотреть страницы где упоминается термин Потенциал специфической адсорбции: [c.111]    [c.127]    [c.115]    [c.132]    [c.111]    [c.127]    [c.434]    [c.111]    [c.127]    [c.301]    [c.336]    [c.39]    [c.41]    [c.42]    [c.44]    [c.51]   
Введение в электрохимическую кинетику 1983 (1983) -- [ c.111 , c.114 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбци я специфическая

Адсорбция специфическая

Влияние специфической адсорбции ионов и молекул иа форму и параметры подпрограмм в методах с линейной и треугольной разверткой потенциала

Специфическая адсорбция второго рода и возможность ее I оценки с помощью приведенной шкалы потенциалов

Специфическая адсорбция первого рода и возможность ее оценки с помощью приведенной шкалы потенциалов

Уравнение поляризационной кривой без учета специфической адсорбции и г-потенциала

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте