Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция ориентационная

    Если к тому же исключить специфическую адсорбцию иоиов, то все еще сохраняется скачок потенциала, обусловленный ориентационной адсорбцией полярных молекул  [c.29]

    При адсорбции часто происходит образование водородной связи между молекулой адсорбата и соответствующими группами или ионами на поверхности адсорбента. Так, при адсорбции молекул воды, спиртов, эфиров, аминов и т. п. на адсорбентах, поверхность которых покрыта гидроксильными группами, например на силикагеле (высокополимерной кремнекислоте), в дополнение к неспецифическим дисперсионным, ориентационным и индукционным взаимодействиям происходит образование молекулярных комплексов с водородной связью. Такие более специфические взаимодействия проявляются также при адсорбции и других молекул с периферическим сосредоточением электронной плотности, например имеющих л-электронные связи, на поверхностях, [c.438]


    Адсорбция полярных молекул на поверхностях, имеющих электрические заряды. Прн адсорбции полярных молекул на адсорбенте, имеющем на поверхности ионы или диполи, возникает взаимодействие диполя адсорбата с электростатическим полем адсорбента. Если молекулы адсорбата невелики и обладают периферически расположенными диполями (например, молекулы воды и аммиака), они ориентируются в электростатическом поле адсорбента. Возникает так называемое ориентационное кулоновское взаимодейст- [c.495]

    Физическая адсорбция обусловливается тремя составляющими межмолекулярного притяжения—дисперсионным взаимодействием, ориентационным взаимодействием и индукционным взаимодействием ( 27). [c.372]

    При физической адсорбции на поверхности ионных кристаллов основную роль играют ориентационное и индукционное взаимодействия, а при адсорбции на угле и других подобных материалах процесс определяется дисперсионным взаимодействием. [c.372]

    Согласно современным теориям адсорбция обусловливается дисперсионным, ориентационным и индукционным взаимодействием. [c.234]

    Адсорбция полярных молекул на адсорбенте, имеющем ионы или диполи, вызывает взаимодействие диполя адсорбата с электростатическим полем адсорбента. Если молекулы адсорбата невелики и обладают периферийно расположенными диполями, как, например, у молекул воды или аммиака, то они ориентируются в электростатическом поле адсорбента. При этом возникает ориентационное кулоновское взаимодействие. [c.107]

    В табл. 2.1 приведены теплоты адсорбции цеолитом МаХ некоторых неорганических веществ, молекулы которых имеют небольшие размеры. В случае полярных молекул здесь преобладают электростатические ориентационные межмолекулярные взаимодействия диполей и квадруполей молекул с электростатическим полем, создаваемым в полостях цеолита его ионами (см. табл. [c.32]

    В случае адсорбции цеолитом полярных неорганических молекул О2, N2, СО, СО2 и ЫНз, состоящих из нескольких атомов и имеющих электрический дипольный и (или) квадрупольный моменты, расчет вкладов энергии дисперсионного и индукционного притяжения и энергии отталкивания в общую потенциальную энергию Ф также можно провести в атом-ионном приближении. Однако кроме этого здесь надо учесть вклады в энергию межмолекулярного взаимодействия электростатического ориентационного взаимодействия электрических моментов молекулы с ионами решетки цеолита. Таким образом, в этом приближении потенциальная энергия Ф равна  [c.216]


    Применение атом-ионного приближения в случае адсорбции полярных молекул этилена и бензола цеолитом NaX потребовало бы знания зарядов на всех атомах молекулы. Так как надежных данных здесь нет, в расчетах были учтены вклады ориентационных электростатических межмолекулярных взаимодействий этих молекул с ионами цеолита в описанном квадруполь-ионном приближе- [c.219]

    Силы взаимодействия, обусловливающие адсорбцию, зависят от структуры молекул и могут иметь различную природу [2]. Общая энергия взаимодействия молекул складывается из энергии дисперсионных, индукционных и ориентационных сил [3, 4]. [c.9]

    Однако часто на дисперсионное взаимодействие могут накладываться ориентационные и индукционные силы, которые проявляются главным образом при физической адсорбции на поверхности ионных кристаллов. [c.9]

    Ориентационное взаимодействие, имеющее характер электростатических сил, проявляется при адсорбции полярных молекул на [c.9]

    Явление адсорбции имеет много общего с молекулярной ассоциацией в жидкостях. Так, при адсорбции молекул воды, спиртов, эфиров, аминов и т. д. на адсорбентах, например на силикагеле, поверхность которого покрыта гидроксильными группами, в дополнение к неспецифическим дисперсионным, ориентационным и индукционным взаимодействиям происходит образование комплексных соединений с водородной связью [6]. [c.10]

    Глубокая общность мицеллообразования с такими ориентационными явлениями, как образование пленок на поверхности воды и свободных пленок (пены), молекулярная адсорбция из растворов, эмульгирование заключается в том, что тенденция к умень- [c.332]

    Глубокая общность мицеллообразования с такими ориентационными явлениями, как образование пленок на поверхности воды и свободных пленок (пены), молекулярная адсорбция из растворов, эмульгирование, заключается в том, что тенденция к уменьшению термодинамического потенциала приводит к определенной ориентации, уменьшающей разность полярностей. Образование мицелл уменьшает значение G благодаря объединению олеофильных групп в неполярную каплю масла, которая покрыта оболочкой из гидрофильных групп, подобно защищенной эмульсии (см. раздел XY. 1) или глобуле полиэлектролита (см. раздел VII. 4). [c.320]

    Наиболее просто повысить эффективность ингибирования преимущественной блокировкой поверхности корродирующего металла бифункциональными соединениями при их плоскостной ориентационной адсорбции, когда силы отталкивания между заряженными частицами минимальны, а заполнение поверхности значительно. При этом изменение потенциала внутри двойного слоя невелико. Совместного влияния двойнослойного эффекта и эффекта блокировки поверхности можно ожидать при большем заряд е поверхности металла или при повышенном содержании бифункциональных ингибиторов, когда плоскостная ориентация молекул может смениться на вертикальную, а ось, проходящая через центр тяжести функциональных групп молекулы ингибитора, бу- [c.144]

    Увеличение содержания растворенного вещества в участках с повышенным значением термодинамического потенциала определяется разностью химических потенциалов в объеме и в данной локальной области и производной химического потенциала по концентрации. В результате такого процесса адсорбции на локальных поверхностях раздела роль имеющихся в объеме раствора включений в процессе кристаллизации в значительной мере уменьшается вследствие обогащения растворенным веществом поверхности раздела воды и включений. На поверхности последних нарушается существовавшее размерное и ориентационное соответствие между решеткой включения и возникающей новой фазой, и это включение уже не может служить готовым центром кристаллизации, на котором возникают двумерные зародыши новой фазы. [c.188]

    В ряде случаев дисперсионные силы усиливаются электростатическими силами — ориентационными и индукционными. Ориентационные силы возникают при взаимодействии полярных молекул с поверхностью, содержащей электростатические заряды (ионы, диполи), индукционные — вызываются изменением электронной структуры молекул адсорбтива и адсорбента под действием друг друга возникновением в молекулах адсорбтива динольных моментов, наведенных зарядами адсорбента, или возникновением дипольных моментов в адсорбенте под действием зарядов молекул адсорбтива. Взаимодействие, вызываемое электростатическими силами, зависит от химической природы адсорбтива и, следовательно, является специфическим. Вклад специфического взаимодействия в общую энергию взаимодействия при адсорбции любых молекул на электронейтральных углеродных адсорбентах практически равен нулю, а при адсорбции полярных молекул на цеолитах, отличающихся гетероионным характером, соизмерим с вкладом неспецифической составляющей. [c.28]


    Физическая адсорбция - это взаимодействие молекул с поверхностью твердых тел с помощью сил Ван-дер-Ваальса (дисперсионных, индукционных и ориентационных). Физическая адсорбция - обратимый процесс. [c.685]

    Наличие дипольного момента и высокая поляризуемость молекул диоксида углерода приводят к тому, что адсорбционная емкость по этому газу в 20-30 раз превышает таковую по низкокипящим газам — аргону и кислороду. Падение адсорбционной емкости образцов по диоксиду углерода с увеличением обгара связано, очевидно, с вьп оранием полярных функциональных групп в процессе активирования или заменой их на менее активные. Следствием этого является уменьшение доли ориентационной составляющей в процессе адсорбции. [c.603]

    Позднее стали использовать стабильные органические свободные радикалы (преимущественно нитроксильиого типа) для изучения молекулярных динамических процессов в блочных полимерах и их растворах, межмолекулярных взаимодействий и конформаций макромолекул в растворах, адсорбции, ориентационного порядка в полимерах и жидких кристаллах. Стабильные свободные радикалы используются как в виде зондов, т. е. отдельных молекул, распределенных в исследуемом веществе,, так и в виде спиновых меток парамагнитных молекул, химически связанных с молекулами исследуемого вещества. Для этих целей чаще всего применяют 2,2,6,6-тетраметилпиперидин-1-оксил и его производные  [c.281]

    На границе соприкосновения различных фаз (например, металл -электролит) возникает пространственное распределение электрических зарядов в виде так называемого двойного электрического рлоя. Разделение зарядов может вызываться различными причинами переходом ионов из электрода в раствор (или наоборот) - ионный двойной электрический слой специфической адсорбцией ионов на поверхности электрода - адсорбционный слой ориентацией полярных молекул растворителя и поверхности электрода - ориентационный слой. Во всех случаях двойной слой электронейтрален. [c.36]

    Понижение энтальпии системы при адсорбции вызвано взаимодействием между частяцами адсорбента и адсорбтива. Физическая адсорбция обусловлена дисперсионными, ориентационными и деформационными силами взаимодействия (см. 41). Энергия взаимодействия молекулы с поверхностью твердого тела, обусловленная межмоле-кулярными силами, убывает пропорционально - 1/г , где г — расстояние от центра молекулы до границы раздела фаз. Если принять при / =Го (радиус молекулы) адсорбционный потенциал Вд, то при г =Зго адсорбционный, потенциал уменьшится до 3—4% от Eq. Это дает основание делать вывод о том, что при физической адсорбции газа (не пара), газ адсорбируется в виде мономолекулярного адсорбционного слоя. При адсорбции пара возможно образование полимо-лекулярного адсорбционного слоя [c.638]

    При физической адсорбции силы, возникающие между молекулами адсорбента и адсорбата, имеют электрическую природу, зависят от расстояния г между молекулами и складываются из трех составляющих ориентационного /ор, индукционного 1/инд, дисперсионного /дисп, а также сил отталкивания между заполненными электронными оболочками атомов молекул. Все три составляющие сил притяжения в первом приближении пропорциональны Полный потенциал ван-дер-ваальсовых сил [c.39]

    Как показали работы М. М. Дубинина и его сотрудников [60, 61 ], при физической адсорбции на поверхности полярных адсорбентов, к которым относятся природные отбеливающие земли, силикагель, синтетические алюмосиликаты, активированная окись алюминия и др., основную роль играют ориентационное и индукционное взаимодействия. Молекулы этих адсорбентов, состоят в основном из окислов кремния и алюминия с включением конституционной и кристаллизационной воды, а в природных адсорбентах также из окислов других металлов. Структурные решетки этих адсорбентов образованы ионами , А " ", Мд " , 0 , ОН или комплексами (310 ) , (А1О4) и т. д. Ионы, лежащие на поверхности адсорбента, хотя в химическом отношении и уравновешены связанными с ними ионами противоположного заряда, находящимися в массе адсорбента, обладают электростатическими зарядами, силовые поля которых лишь частично скомпенсированы внутренними ионами. Нескомпенсированные силовые поля по- [c.234]

    Природа такого влияния силиката еще не выяснена. Можно предполагать, что увеличение адсорбции ПАВ, очевидно, связано с образованием в поверхностном слое силикатосульфонольных комплексов. Последние обеспечивают ориентационный эффект молекул ПАВ и гидрофильность поверхности. Несомненно, что добавка силиката препятствует вытеснению додецилбензолсульфоната из адсорбционного слоя при контакте с углеводородной средой (мангышлакская нефть) в отличие от сульфонольных растворов без добавок силиката и соды. [c.104]

    Адсорбцию, вызванную химическим взаимодействием молекул контактирующих фаз, называют хемосорбцией, а адсорбцию в результате действия вандерваальсовых сил (ориентационных, индукционных и дисперсионных)—физической адсорбцией. Эти разновидности адсорбции сопровождаются различными по величине тепловыми эффектами теплота, выделяемая при физической адсорбции, близка к теплотам конденсации (порядка 40 кДж/моль), а при хемосорбции она имеет порядок теплоты химических реакций (около 400 кДж/моль). [c.38]

    Адсорбция полярных молекул иа полярном адсорбенте вызывает ориентационное кулоновское взаимодействие диполя адсорбата с электростатическим полем адсорбента. Энергия индукционных и ориентационных сил, как и дисперсионных, при парном взаимодействии одинаковым образом зависит от расстояния — обратно пропорциональна шестой степени расстояния между центрами взаимодействующих атомов. И ориентационное, и индукционное взаимодействия, будучи электростатиче- [c.212]

    Особенно характерно изменение разности теплот адсорбции таких молекул, как С2Н4 и СаНб, выражающей в основном вклад специфических (в данном случае электростатических ориентационных) взаимодействий с цеолитом молекул С2Н4 (рис. 2.11). Эта разность весьма значительна для цеолита ЫЫаХ и уменьшается с ростом радиуса щелочного катиона. [c.37]

    Рассмотрим возможность молекулярно-статистического расчета термодинамических характеристик адсорбции в атом-ионном приближении для потенциальной функции межмолекулярного взаимодействия молекула — ионный адсорбент. Заряды на образующих молекулы атомах, как и истинные заряды ионов адсорбента, часто неизвестны с нужной для расчета константы Генри точностью. Поэтому следует найти атом-ионные потенциалы межмолекулярного взаимодействия и уточнить их параметры, используя экспериментальные значения константы Генри для адсорбции опорных молекул данного класса адсорбатов. Далее, как и в рассмотренном в лекции 9 случае адсорбции на ГТС, надо проверить возможность переноса полученных атом-ионных потенциалов на другие молекулы данного класса. Использование атом-ионного приближения при адсорбции на ионных адсорбентах неполярных молекул требует учета дополнительного вклада в атом-ион-ный потенциал, вносимого поляризацией неполярной молекулы электростатическим полем ионного адсорбента (индукционное притяжение, см. табл. 1.1). Кроме того, при адсорбции ионными адсорбентами полярных молекул в рамках классического электростати- ческого притяжения надо учесть взаимодействие жестких электри- ческих дипольных и квадрупольных моментов молекулы с электростатическим полем ионного адсорбента (ориентационное притяжение, см. табл. 1.1). Затруднения, связанные с локализацией этих моментов в молекуле, значительно усложняют расчеты константы Генри для адсорбции полярных молекул на ионном адсорбенте. [c.205]

    ПОЛЯ молекулы с катионами Na+ дает вклад притяжения, а соответствующее взаимодействие с анионами рещетки цеолита дает вклад отталкивания, причем суммарный вклад притяжения преобладает. Это притяжение должно вызвать соответствующее увеличение общей энергии отталкивания. Однако его трудно учесть в рамках атом-ионного приближения, описывающего основной (для адсорбции большинства молекул) вклад в энергию отталкивания. В рассматриваемых ниже случаях, за исключением адсорбции цеолитом NaX сильно полярных молекул NH3, вклад ориентационного эффекта притяжения по своему значению не является определяющим. Поэтому соответствующим еще меньшим по значению изменением общей энергии отталкивания можно или пренебречь, или учесть его косвенно принять, что оно компенсирует поправку р для вкладов дисперсионного и электростатического индукционного притяжения в общую энергию межмолекулярного взаимодействия молекулы адсорбата с цеолитом. Поправка р, как было показано для случая адсорбции полярных молекул [см. уравнение (11.9)], уменьшает преобладающие в атом-ионном потенциале ф1...1 вклады притяжения, что формально эквивалентно соответствующему увеличению отталкивания. Поэтому в дальнейшем при расчете Ф для адсорбции полярных молекул цеолитом в ФА...япоправка р не вводится. [c.218]

    Формулы (49.1) — (49.3) справедливы для расчета энергии ориентационного взаимодействия тогда, когда тепловое движение не расстраивает ориентацию молекул, т.е. когда С/ор>кТ. Поэтому они пригодны для расчета энергии в молекулярных кристаллах, где положение молекул фиксировано. В газах и жидкостях, в растворах и на поверхности (адсорбция) тепловое движение приводат к всевозможным ориентациям молекул. Усредняя энергию взаимодействия по всем возможным ориентациям с учетом теплового движения, получаем формулу для молекул с одинаковыми диполями [c.256]

    Силы Ван-дер-Ваальса (ориентационный, индукционный и дисперсионный эффекты). Очень слабые силы притяжения между нейтральными атомами или молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, называют межмолеку лярным притяжением или силами Ван-дер-Ваальса . Они действуют в веществах, находящихся в газообразном или жидком состоянии, а также между молекулами в молекулярных кристаллах. Своа название они получили по имени голландского исследователя Ван-дер-Ваальса, постулировавшего их существование введением поправочного члена в уравнение состояния идеального газа. Эти силы обусловливают отступление реальных газов от идеального состояния. Кроме того, межмолекулярное притяжение определяет возможность агрегации вещества, сопровождающейся выделением энергии. Оно играет важную роль в процессах адсорбции, катали- [c.133]

    В ряде работ [317, 318] исследовались ориентационные эффекты присоединения дейтероводорода к молекуле бутадиена-1,3 на ZnO. Показано, что продукт 1,2-присоединения состоит на 75% из 3d,-бутена-1 и на 25% из 4-d,-бутена-1. Такое распределение дейтерия не зависело от температуры реакции в диапазоне от -40 до 20 °С, хотя характер присоединения атомов Н и D к атомам цинка и кислорода при адсорбции молекулы HD на ZnO при этих температурах противоположен [322] при комнатной температуре предпочтительнее образование структуры ZnH-OD. На первый взгляд представляется, что преимущественное образование 3-d,-бутена-1 при температуре -40°С противоречит предположению о протекании реакции гидрирования бутадиена-1,3 через я- [c.120]

    Особенность метода газотвердофазной (газоадсорбщюнной) фомато-графии (ГАХ) в том, что в качестве неподвижной фазы применяют адсорбенты с высокой удельной поверхностью (10—1000 м т" ), и распределение веществ между неподвижной и подвижной фазами определяется процессом адсорбции. Адсорбция молекул из газовой фазы, т. е. концентрирование их на поверхности раздела твердой и газообразной фаз, происходит за счет межмолекулярных взаимодействий (дисперсионных, ориентационных, индукционных), имеющих электростатическую природу. Возможно образование водородной связи, причем вклад этого вида взаимодействия в удерживаемые объемы значительно уменьшается с ростом температуры. Комплек-сообразование для селективного разделения веществ в ГАХ используют редко. [c.296]


Смотреть страницы где упоминается термин Адсорбция ориентационная: [c.243]    [c.258]    [c.426]    [c.236]    [c.236]    [c.152]    [c.213]    [c.28]    [c.34]    [c.219]    [c.243]   
Теоретическая электрохимия (1965) -- [ c.209 ]

Теоретическая электрохимия Издание 2 (1969) -- [ c.206 ]




ПОИСК







© 2025 chem21.info Реклама на сайте