Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двуокись серы как растворитель для

    Кроме того, необходимо, чтобы применяемый растворитель неограниченно смешивался с одним веществом, в то время как второе вещество было бы в нем практически нерастворимо. В данном случае жидкая двуокись серы отвечает этим требованиям. [c.405]

    Жидкая двуокись серы является растворителем, имеющим низкую температуру кипения (—10°). Она смешивается с парафиновыми сульфохлоридами в любом соотношении и вместе с тем совершенно неспособна растворять высокомолекулярные парафиновые углеводороды. Преимуществом является также и то, что непрореагировавший углеводород, отделенный при экстрагировании, может быть вновь введен в процесс сульфохлорирования без удаления двуокиси серы, так как последняя сама является участником реакции сульфохлорирования. [c.405]


    Двуокись серы исследовалась как растворитель для смазочных масел еще в 1917 г. [59, (30], по большое развитие вместе с другими растворителями получила между 1930 и 1940 гг. [c.275]

    Впервые смешанный растворитель ЗОг+бензол был применен для рафинирования смазочных масел вместо серной кислоты. Этот способ носит название процесса Эделеану [57—611. Прототипом для переработки масел этим методом послужила экстракция нефти, примененная еще в 1911 г. Главным растворителем является жидкая двуокись серы количество добавляемого бензола колеблется в пределах 15—25% и тем выше, чем выше вязкость масла. Двуокись [c.395]

    Двуокись серы была первым растворителем, примененным в промыщленности более 30 лет назад, для экстрагирования керосина и других легких дестиллатов. При обработке тяжелых дестиллатов избирательность этого растворителя остается также весьма высокой, но растворяющая способность очень быстро снижается по мере утяжеления очищаемых нефтепродуктов. [c.313]

    В этом обзоре доноры атомов водорода, например вода, метанол и формамид, рассматриваются как протонные растворители растворители с константами диэлектрической проницаемости более 15, которые, хотя и содержат атомы водорода, но не способны выступать в роли доноров лабильных атомов водорода с образованием сильных водородных связей, рассматриваются как сильно полярные апротонные соединения. К числу таких обычных полярных апротонных растворителей относятся диметилформамид, диметилацетамид, Ы-метиЛпирролидон-2, диметилсульфоксид, тетраметиленсульфон (сульфолан), диметилсульфон, ацетон, нитрометан, ацетонитрил, нитробензол, двуокись серы, пропиленкарбонат. В обзоре рассматриваются преимущественно ДМФА, ДМАА и ДМСО, так как эти растворители доступны и широко применяются [2,4]. Но следует помнить, что существует много других полярных апротонных растворителей, применение которых в отдельных частных случаях может быть предпочтительным. Некоторые физические константы обычных полярных апротонных растворителей приведены в табл. 1. [c.7]

    При взаимодействии бутадиена с двуокисью серы-образуются как мономерные, так и полимерные сульфоны бутадиена. Аналогичным образом ведут себя изопрен и диметилбутадиен [246—248]. Мономерный сульфон бутадиена, который может рассматриваться как сульфон 2,5-дигидротиофена, при 120— 130° количественно разлагается на бутадиен и двуокись серы [246]. Он растворим в воде и органических растворителях, однако обеспечивает перманганат и бром только в водном растворе [246], При окислении перманганатом он превращается в сульфон тиодигликолевой кислоты (тио-быс-уксусная кислота), а затем в диметилсульфон [246]  [c.192]


    Специальные растворители. К числу специальных растворителей, применяемых для исследования процессов нейтрализации, относятся жидкая двуокись серы, сульфурилхлорид, тионилхлорид, окси-хлорид селена, фосген, фторид бора и др. [c.156]

    Фурфурол как растворитель Двуокись серы как растворитель  [c.391]

    Двуокись серы как растворитель [c.392]

    В качестве растворителей предложено применять жидкую двуокись серы, фурфурол, фенол, нитробензол, дихлорэтиловый эфир, смесь пропана с крезолом и фенолом и др. [c.80]

    Давление пара. Низкое давление пара экстрагента обеспечивает лучшие условия хранения экстрагента и дает возможность проводить процесс экстракции при атмосферном или умеренном избыточном давлении одновременно уменьшаются потери экстрагента. Иногда экстракцию проводят при повышенном давлении, чтобы облегчить регенерацию экстрагента методами, в которых используется высокая летучесть последнего. Например, в процессах очистки нефтепродуктов обычно применяют в качестве селективных растворителей жидкие пропан и двуокись серы, высокая летучесть которых позволяет эффективно осуществлять последующий процесс регенерации экстрагента. [c.150]

    В и к т о р о в М. М., Ш а т е н ш т е й и А, И Жидкая двуокись серы как растворитель неорганических соединений, ЖФХ, 11 ( 938). [c.452]

    У системы шестифтористая сера (растворитель) — двуокись углерода (растворенное вещество) критическая кривая (рис. 5) отходит от критической точки чистого растворителя в сторону температур более низких, чем критическая температура чистого растворителя (44,56 °С). Это часто, но не всегда, наблюдается, когда растворитель имеет, как в приведенном примере, более высокую критическую температуру, чем растворенное вещество. Но и в системе двуокись углерода (растворитель) — шестифтористая сера (растворенное вещество) [17] критическая кривая отходит от критической точки чистого раствори- [c.27]

    Рис. 7. Проекции Р — Иг (о), Т Ы2 (б), о —Л 2 (в) начального участка критической кривой для системы шестифтористая сера (растворитель) — двуокись углерода (растворенное вещество) [13]. [c.34]

    По экспериментальным данным Р — у — Т — для системы шестифтористая сера (растворитель) — двуокись [c.36]

    На практике реакционную трубку наполяяют растворителем и пропускают через нее газы (углеводород, кислород и двуокись серы), измеряя их количество соответствующими реометрами. Отношение углеводород кислород двуокись серы лучше всего поддерживать равным 4 2 1. Если объем растворителя составляет 800 мл, то через него в час пропускают 20 л углеводорода, 10 л двуокиси серы и 5 л кислорода. Через некоторое время четыреххлористый углерод мутнеет и начинают выделяться труднорастворнмые в нем сульфокислоты на этот раз в виде верхнего слоя, поскольку они легче. Каждый час в описанных выше условиях получают около 16 г масла, которое затем обрабатывают так, как было указано для циклогексана. В результате получают смесь, содержащую 87% бутилмоносульфрнатов и 13% сульфата натрия. После начала реакции прерывать облучение нельзя, так как сульфоокисление в этом случае сразу прекращается..  [c.487]

    Постоянно отбираемый раствор перекиси в мепазине поступает во вторую реакционную колонну, куда, подают двуокись серы и кислород. Туда же вводят разбавленную уксусную кислоту, в качестве растворителя для получающейся сульфоновой кислоты. В этой стадии образуется при 55—60° сульфоновая кислота по цепной реакции с участием перекиси . [c.498]

    Серная кислота, олеум и хлорсульфоновая кислота обычно применяются в избытке, выполняя одновременно роль дешевых низковязких растворителей для образующ ихся сульфокислот (или сульфонилхлорида). Серный ангидрид может применяться непосредственно в виде жидкости (как она выпускается на рынок) или она может быть легко переведена в парообразное состояние (температура кипения 44,8°) и перед введением в сульфуратор возможно ее разбавление инертным газом. Жидкая двуокись серы — превосходный инертный растворитель при сульфировании бензола серным ангидридом [17, 42, б4] или хлорсульфоновой кислотой [86], а также она может быть реакционной средой при сульфировании додецилбензола 20%-ным олеумом [14]. При производстве сульфонил-хлоридов (с хлорсульфоновой кислотой) в промышленности растворители но применяются в лабораторной практике в некоторых случаях применяется хлороформ в качестве реакционной среды [54]. Серный ангидрид смешивается с жидкой двуокисью серы, а также с такими хлорированными органическими растворителями, как тетрахлорэтилен, четыреххлористый углерод и трихлорфторметан. Высокая реакционная способность серного ангидрида может быть смягчена введением его в комплексе с большим числом разнообразных веществ. Эти комплексы по своей реакционной способности располагаются в ряд в зависимости от природы исходного вещества, взятого для получения комплекса. [c.518]


    Из большого числа предложенных растворителей применяются в промышленности следующие фенол, фурфурол, нитробензол, крезол-пропан (дуосол), дихлорэтиловый эфир (хлорекс), двуокись серы, двуокись серы-бензол, диэтиленгликоль-вода (юдекс). [c.281]

    Благодаря своим особым характеристикам один растворитель имеет преимущества перед другим для каждого конкретного случая применения. Так, вследствие низкой растворяющей способности и высокой упругости паров двуокись серы [81] применяется только в ограниченных пределах для очистки смазочных масел, однако ее растворяющая способность является вполне достаточной для низкокинящих фракций и она может быть использована при (—29) (—35)° С для извлечения ароматики из бензиновой фракции, а при —7° С — для очистки керосиновых дистиллятов. В случае ее ограниченного применения для очистки смазочных масел температура поддерживается в пределах от 10 до 24° С. [c.281]

    Способы, основанные на экстрагиронанин ароматических углеводородов различными растворителями. В качестве растворителей для извлечения ароматических углеводородов из нефтяных фракций был предложен ряд продуктов жидкая двуокись серы, диметилсульфат, анилин, диэтилсульфат, левулиновая кислота, фурфурол и т. д. Одпако пи с одним из этих продуктов не получается точных результатов, так как, с одной стороны, растворимость углеводородов различных классов одного в другом значительно превосходит их растворимость в любом из этих растворителей, а с другой — нри растворении вместе с ароматическими углеводородами растворяется некоторое количество неароматической части продукта. [c.481]

    Примером разделения систем этого типа служит экстрагирование растворителями, впервые примененное в нефтеперерабатывающей промышленности для очистки керосина и смазочных масел от ароматических углеводородов. Этот метод можно использовать с успехом и в случае низкомолекулярных углеводородов, присутствующих в бензине, поскольку его применение почти не зависит от молекулярного веса и температуры кипения обрабатываемых смесей. Однако, чтобы в последнем случае образовались две жидкие фазы, надо работать при низкой температуре. Из применяемых растворителей следует назвать жидкую двуокись серы, нитробензол, хлорекс ( , б-ди-хлордиэтиловый эфир), фурфурол, фенол, а также жидкий пропан, В результате получают экстракт (раствор извлекаемых углеводородов в данном растворителе) и раффинат (углеводороды, нерастворимые в данном растворителе) в первом продукте отношение углерода к водороду высокое, во втором — низкое. Иначе говоря, с помощью этого метода можно экстрагировать ароматические углеводороды из их смесей с парафинами и нафтенами. Экстракция растворителями является сейчас распространенным техническим приемом. [c.38]

    Жидкий аммиак — наиболее изученный неводный растворитель, его = —33,35 °С безводная двуокись серы несколько удобнее в этом отношении, так как ее = —10,2 °С. Но в обоих случаях необходимо работать в условиях, отличаюш ихся от нормальных при более низкой температуре, или более высоком давлении. С другой стороны, для получения в жидком состоянии расилавлениых солей KNOg или Na l в качестве растворителей необходима очень высокая температура. Вместе с тем большое число обычных ие-водных растворителей, таких, как метанол, этанол, уксусная и серная кислоты, находятся в жидком состоянии при комнатной температуре. [c.349]

    Как растворитель двуокись серы обладает интересными особенностями. Например, галондоводороды в ней практически нерастворимы, а свободный азот растворим довольно хорошо (причем с повышением температуры растворимость его возрастает). Элементарная сера в жидкой ЗОг нерастворима. Растворимость в ней воды довольно велика (около 1 5 по массе при обычных температурах), причем раствор содержит в основном индивидуальные молекулы НгО, а не их ассоциаты друг с другом или молекулами растворителя. По ряду С1—Вг—I растворимость галогенидов фосфора быстро уменьшается, а галогенидов натрия быстро возрастает. Фториды лития и натрия (но не калия) растворимы лучше их хлоридов и даже бромидов. Хорошо растворим Хер4, причем образующийся бесцветный раствор не проводит электрический ток. Напротив, растворы солей обычно имеют хорошую электропроводность (например, для ЫаВг при 0°С имеем К = Ъ- 10 ). Для некоторых из них были получены кристаллосольваты [например, желтый КЬ (302)4]. Подавляющее большинство солей растворимо в жидкой ЗО2 крайне мало (менее 0,1%). То же относится, по-видимому, и к свободным кислотам. [c.329]

    Растворители можно подразделить на ионизирующие, в которых молекулы распадаются на ионы, и неионизирующие. В ионизирующих растворителях образуются прочные сольваты с дипольными молекулами растворителя. Эти растворители имеют большую диэлектрическую проницаемость (табл. 16). К ним относятся вода, формамид, жидкий аммиак, двуокись серы, сероводород, муравьиная кислота, метанол, этанол, пиридин н др. Неионизирующие растворители имеют малую диэлектрическую проницаемость, например, хлороформ, бензол, гек- [c.64]

    В качестве растворителей при сульфировании арилалканов применяют жидкую двуокись серы, ацетоннтрил или эфир. [c.246]

    В этом разделе рассматриваются диметилсульфоксид, сульфолан, диме-тилсульфон и двуокись серы. Наиболее широко из этих соединений используется диметилсульфоксид, являющийся универсальным, подробно исследованным растворителем. Другим растворителям уделялось относительно - меньше внимания, за исключением двуокиси серы, обладающей чрезвычайно неприятными свойствами. [c.39]

    Двуокись серы представляет интерес как пример растворителя, не содержащего водород, особенно эффективного для стабилизации свободных радикалов и обладающего достаточно высокой диэлектрической постоянной (18 при -21 °С). Она находится и жидком состоянии в неудобной для работы области температур (от -73 до -10°С). Проблемы, связанные с использованием SO2 в качестве растворителя электролитов, подробно исследованы Элвингом и сотр. [1. Они столкнулись с трудностями при выборе подходящего индикаторного электрода, электрода сравнения и фонового электролита. [c.44]

    Химические сдвиги протонов, входящих в состав различных заряженных частиц Методом ЯМР изучен ряд карбтсатионов и карбанионов, имеющих большую иродолжптельность жизни. Для получения таких заряженных частиц требуются растворители с высокой ионизирующей способностью, например сверхкислоты (см. гл. 1, разд. 1.Г.11), водные растворы минеральных кислот, безводная фтористоводородная кислота, двуокись серы или тетрагидрофуран. 1Ъ- а нерастворимости ТМС во многих из этих растворителей данные о спектрах ЯМР часто приводятся без указания эталона или по отношению к внешнему эталону. Наилучшим из [c.294]

    Хотя большая часть заводов по очистке масел избирательными растворителями, уже работающих или строящихся, применяют фурфурол или фенол, было разработано и практически используются несколько других растворителей, а именно двуокись серы (процесс Эделеапу) [28], двуокись серы — бензол хлорекс (дихлорэтиловый эфир) [29] нитробензол [30] нитробензол — серная кислота. [c.134]

    При повышении температуры лигнин набухал. Бензол сорбировался лигнином А в меньшей степени, чем полярные растворители. Двуокись серы сорбировалась необратимо — около одной восьмой Б.Э.Т. мономолекулярного слоя (Брунауэр с сотруд- [c.220]

    Получение значительных количеств сульфонов и их дисульфокислот— недостаток сульфирования с помощью 50з. Хотя сульфирование в этом случае менее обратимо и обеспечивается вы- сокая степень превращения, приходится считаться с опасностью окисления органических веществ под действием ЗОз, сильным нагревом реакционной массы и другими явлениями, осложняющими технологический процесс. Тем не менее способ несомненно интересен, так как в близкой перспективе производство 50з значительно увеличится, а цена ее соответственно уменьшится. Поэтому уделялось и уделяется значительное внимание разным средам, в которых возможно проводить сульфирование этим агентом. Такими средами могут быть различные органические растворители, жидкая двуокись серы [24—26] наконец, имеются работы по сульфированию комплексами трехокиси серы [27, 28]. Эти комплексы пригодны для получения со значительными выходами сульфокислот многих легко окисляющихся и нестабильных веществ. Для сульфирования ароматических углеводородов этот [c.132]

    Образование клатратных соединений можно рассматривать как частный с.тучай персорбции. В клатратах также имеются полости, но без входных окон. Таким образом, адсорбция с образованием клатрата протекает как кристаллизация частиц твердого тела с включением молекул адсорбата . Примером может служить кристаллизация хинола в присутствии растворителя или растворенного газа, молекулы которых достаточно малы и могут входить в полости диаметром несколько ангстрем, образуемые молекулами хинола. Иногда в такие полости входит не одна, а несколько молекул. Таким образом, получаются стехиометрические кристаллы, однако при этом решающую роль играют не химические, а топологические факторы. Такие разные по своей природе вещества, как двуокись серы, метанол, муравьиная кислота, азот, образуют с хинолом клатратные соединения [143]. [c.494]

    Совсем неплохое совпадение обоих значений оправдывает выбранный метод вычисления lim (dPIdN r, . в том случае, когда отсутствуют экспериментальные данные Р — V — Т — в окрестности критической точки чистого растворителя. Например, для системы двуокись углерода (растворитель) — шестифтористая сера (растворенное вещество) [17] имеем  [c.38]

    По данным Р — V — Т — N, полученным с высокой степенью точности для системы шестифтористая сера (растворитель) — двуокись углерода (растворенное вещество) [2, 3], проверили [6, 7] в первую очередь уравнение (П.21) и неравенство (11.24). Методом численного дифференцирования [8] были найдены значения (dPidv)j- j для ряда точек критической кривой [6]. Абсолютная ошибка в значениях производной достигала 5 10 кгс-моль-см . В пределах этой ошибки для системы шестифтористая сера (растворитель) — двуокись углерода (растворенное вещество) справедливо уравнение (11.19). Вдоль начального участка критической кривой производная (oP/ou)r,iV2,K прямо пропорциональна мольной доле растворенного вещества в критической фазе (рис. 9). [c.44]

    Проверим теперь, насколько точно вычислено значение А. Значение lim (oP/oiVa) ),г,к Для системы шестифтористая сера (растворитель) — двуокись углерода (растворенное вещество) равно 63,5 кгс-см -(мол. доля) . Критическая температура шестифтористой серы по дан- [c.44]


Смотреть страницы где упоминается термин Двуокись серы как растворитель для: [c.487]    [c.62]    [c.381]    [c.397]    [c.12]    [c.275]    [c.146]    [c.377]    [c.636]    [c.638]    [c.35]   
Карбониевые ионы (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Серы двуокись



© 2025 chem21.info Реклама на сайте