Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфор в технологии

    Этилбензол в СССР производят алкилированием бензола этиленом в присутствии хлорида алюминия по технологии, аналогичной двухфазному алкилированию бензола пропиленом. За рубежом получили развитие процессы высокотемпературного гомофазного алкилирования бензола этиленом в присутствии растворимых количеств хлорида алюминия (фирма Монсаито-Луммус ) и в присутствии цеолитного катализатора, промоти-рованного фосфором (фирма Мобил-Баджер ), [c.173]


    Красный фосфор нашел широкое применение в науке и технике благодаря своим универсальным характеристикам, отличающим его от более распространенной аллотропной модификации - белого фосфора. В отличие от белого фосфора, красный фосфор не токсичен и не пирофорен, более стабилен. Существующие технологии получения красного фосфора основаны на высокотемпературном переделе (573-623 К) белого фосфора и характеризуются высокой пожароопасностью, плохой воспроизводимостью некоторых физико-химических свойств целевого продукта, последнее, как правило, связывают с предысторией исходного белого фосфора. [c.146]

    Несмотря на то что меласса является побочным продуктом производства, состав ее до сих пор не регламентирован. Это объясняется главным образом тем, что он зависит от многих рассмотренных выше факторов, в большинстве не зависящих от сахарных заводов и требующих изменения технологии в ущерб выходу и качеству сахара. К тому же различные производства, использующие мелассу, предъявляют к ней неодинаковые, часто противоположные, требования. Не вдаваясь в причины, отметим, что для производства хлебопекарных дрожжей и спирта желательна возможно большая буферная емкость мелассы, для производства же, например, лимонной кислоты, наоборот, небольшая если для первых двух производств высокое содержание фосфора в мелассе полезно, то для третьего — вредно и т. д. [c.28]

    Отдельные партии фосфорсодержащей руды и кварцита могут значительно различаться по структуре и химическому составу, что требует соответствующих режимов переработки и специального оборудования. Переработка же сырья различного качества по установившейся технологии влечет за собой нарушение режима работы печи и приводит к серьезным авариям. Поэтому при организации производства фосфора технологию и оборудование следует разрабатывать применительно к сырью определенных месторож- [c.64]

    Продукты обесшламливания хвостов флотации (фракция -0,1 мм), получаемые в процессе производства стекольного песка, используют для выпуска кварцевого абразива (ПО Фосфорит Технология предусматривает обработку шламовой части серной кислотой для уда-ле(шя остатков флотореагентов, фильтрацию и сушку дисперсии, охлаждение готового продукта, его складирование и погрузку с последующим применением в качестве чистящего средства бытовой химии. [c.51]

    В 1856 г. Бессемер опубликовал сообщение об изобретенном им конвертере. Первые попытки повторить опыты Бессемера окончились неудачей получить таким методом сталь можно было только из руды, не содержащей фосфора. Как только это удалось установить, дело пошло на лад. В результате сталь стала дешевой, и железный век (см. гл. 1) уступил дорогу веку стальному. (В последующие годы технология производства стали значительно усовершенствовалась были разработаны новые способы, превосходящие способ Бессемера.) Значение стали трудно переоценить. Сталь — это современные небоскребы и подвесные мосты, сталь — это рельсы для поездов, сталь — это мощные боевые корабли и всесокрушающая артиллерия. [c.138]


    Ванна печи представляет собой химический реактор, в котором протекают многочисленные химические реакции. В нее загружают шихту, находящуюся в различном физико-химическом состоянии (от твердых кусков до расплавленной массы), шлак, феррофосфор и печной газ, содержащий фосфор. Технологические процессы, протекающие в ванне, очень разнообразны. Одни протекают непрерывно, другие требуют полного проплавления загруженных материалов. Важнейшим параметром печи является электрическое сопротивление материалов. Оно зависит от большого числа факторов удельного сопротивления материалов, находящихся в ванной, геометрических размеров ванны, числа и размеров электродов, их расположения в ванне. Пронизываемая током большой силы, ванна находится в электромагнитном поле с высокой магнитной напряженностью, оказывающим влияние на распределение в ней мощности. Взаимная связь этих факторов с требованием технологии предопределяет электрический режим работы,печи. [c.120]

    В химической технологии адсорбцию используют для очистки нефтепродуктов от малых содержаний воды, соединений серы, селена, мышьяка, фосфора и т. п. для разделения смесей на составляющие их компоненты для очистки газов и т. д. Благодаря трудам. Н. Д. Зелинского и его ученика А. А. Баландина (1898— 1967) особое место в химической технологии заняла адсорбция на катализаторах (подробней см. разд. III.9). [c.129]

    Дпя получения высококачественных металлов а современной металлургии все шире начинают использовать различные методы рафинирования с помощью вакуумного, электрошлакового, электронно-лучевого, плазменно-дугового переплавов, изменения технологии конечного раскисления и пр. Все эти методы направлены на очистку сталей от вредных примесей (кислород, сера, фосфор), а также неметаллических включений. Металлы после рафинирования имеют, как правило, более высокие показатели механических свойств, высшую плотность, меньшую физическую неоднородность, анизотропию механических характеристик и др. [c.56]

    Количественный химический анализ имеет большое значение в технике. Развитие химической технологии, особенно металлургии, вызвало необходимость разработки новых методов анализа, а также расширения и углубления теории количественного анализа. Химический анализ незаменим при исследованиях полезных ископаемых, которые являются основным сырьем для многих важнейших отраслей промышленности. При исследовании руд часто необходимо определить содержание не только основных компонентов, но также и малых количеств примесей (мышьяка, фосфора и др.), так как это в значительной степени определяет ценность руды и пути ее переработки. [c.10]

    Процессы растворения, направленной массовой кристаллизации, фильтрования и промывки осадков, упаривания растворов и суспензий превалируют в технологии экстракционной фосфор юй кислоты [109], калийных соединений [191], сульфата натрия [208] и т. д. [c.6]

    На основе исследований разработаны способ, технология и получен патент на стабильный к окислению (более 8 лет) и прессующийся красный фосфор при хранении в атмосфере. Стабилизированный фосфор обеспечивает сохранение рабочих свойств составов и удлиняет ГСХ. [c.82]

    Проводилось также термодинамическое моделирование процессов утилизации ядохимикатов и других супертоксикантов. Необходимо отметить, что эти результаты носят предварительный характер и представляют собой как бы начальный этап большой работы. Сегодня утилизация ядохимикатов и супертоксикантов, как уже говорилось, является исключительно важной проблемой. Только по городу Перми в год образуется более 100000 т токсичных органических галогенсодержащих отходов, требующих утилизации. Сегодня эта проблема не решена, т.е. отсутствует технология экологически безопасной утилизации супертоксикантов, содержащих в совей структуре атомы галогенов, серы, фосфора, мышьяка, ртути и т.д. [c.102]

    Для защиты графита от окисления рекомендуют проПитку его фосфорсодержащими соединениями. Для графитов, которые по технологии подвергаются пропитке пеком, введение фосфорных соединений может быТь совмещено с этой операцией [26, с. 73-76]. При этом используются фосфорные органические соединения или фосфорная кислота. В последнее время применяют полифосфаты металлов [76]. Для защиты могут быть применены сложные составы, включающие соединения фосфора и бора, которые образуют после обжига фосфатные стекла. Пленки из таких стекол оказывают защитное действие до 950 °С, причем потери массы при 500 снижаются почти на два порядка. Ниже приведены потери массы графита пропитанного соединениями фосфора. [c.125]

    В некоторых производствах химической промышленности (получение карбида кальция, фосфора) применяют дуговые печи, в которых дуга горит в шихте, обладающей высоким удельным сопротивлением благодаря этому в шихте выделяется значительное количество тепла (такие электрические печи большой мощности описаны в курсах специальной химической технологии). [c.380]


    Первая группа примесей (кремний, марганец, сера и фосфор) попадает в сталь из руды и топлива или специально вводится в жидкую сталь при плавке как раскислитель. Присутствие этих примесей неизбежно в стали по условиям современной технологии ее производства, поэтому целесообразно называть эти примеси технологическими (198]. [c.12]

    Ниже приводится описание принципиальных технологических схем в основном промышленных установок по производству различных присадок. По технологии присадки условно разделены на следующие группы сульфонатные присадки присадки на основе алкилфенолов и их производных присадки, содержащие серу и фосфор вязкостные присадкн и депрессоры. Такое разделение, конечно, не может охватить технологические процессы производства всех типов присадок и не характеризует полностью особенности каждого процесса, однако дает возможность объединить процессы, близкие по технологическому оформлению. Следует отметить, что в литературе отсутствует описание схем производства некоторых присадок. Автор попытался восполнить этот пробел, составив технологические схемы на основании имеющихся литературных сведений по синтезу и исследованию соответствующих присадок. Возможно, однако, что в таких случаях схемы имеют некоторые отклонения от реализованных на практике. [c.222]

    Фосфогипс представляет собой отход производства ЭФК, на 80-90 % состоящий из дигидрата сульфата кальция. Характерными особенностями фосфогипса являются высокая влажность, содержание примесей фосфора и фтора, которые отрицательно влияют на качество получаемых изделий. В связи с этим в технологии приготовления смеси предусмотрена предварительная нейтрализация фосфогипса гидроксидом кальция. [c.159]

    Проводится большая работа по комплексному использованию фосфоритов одного из крупнейших месторождений—бассейна Каратау с применением в производстве бедных руд, фосфатно-кремнистых сланцев и рудной мелочи. Промышленные испытания показали, что после предварительного окусковывания (агломерации или грануляции с высокотемпературным обжигом) рудная мелочь служит высококачественным сырьем для получения фосфора. Технология агломерации заложена в проекты фосфорных производств, эксплуатирующих фосфориты месторождения Каратау, которые вводятся в десятой пятилетке. [c.194]

    Аммиачная селитра является важнейшим компонентом сложных удобрений, в состав которых кроме азота входят фосфор, калий и другие элементы. Термическая устойчивость, взрьшо-пожароопас-ные свойства таких смесей могут изменяться в широких пределах в зависимости от характера и содержания составляющих компонентов. Поэтому при организации производства различных композиций на основе аммиачной селитры в каждом конкретном случае необходимы всесторонние опытно-промышленные исследования взрыво- и пожароопасных свойств составляющих компонентов и их смесей. Эти свойства должны учитываться при разработке технологии производства и оборудования. И, во всяком случае, должны приниматься меры, исключающие тепловое разложение этих продуктов. [c.56]

    При разработке новой технологии получения фосфора необходимо тщательно отрабатывать режим спекания и коксования электродной массы. Следует помнить, что верхняя зона коксования должна быть расположена выше контактных токоподводящих плит. При установившемся режиме работы рудотермической печи необходимо обеспечивать установленную скорость перепуска электродов, своевременное и качественное заполнение оболочки электродной массой. Во избежание утечки расплавленной электродной массы через неплотности оболочки необходим тщательный контроль качества ее изготовления и особенно сварки. [c.73]

    Химико-технологическое сжигание исходных материалов в печах осуществляется в двух целевых направлениях. Первое из них — получение новых продуктов на основе реакции горения. В данном случае получаемые в печи продукты горения являются целевыми продуктами технологической линии промышленного производства. К этому направлению относятся сжигание серы, фосфора, фосфорсодержаш,его шлама, СО, углеводорода, сероводорода, водорода и др. Второе целевое направление —это термическое обезвреживание отходов, основанное также на реакции горения. Обезвреживание отходов (находяш,ихся в различных фазовых состояниях) происходит за счет самостоятельного горения или при добавлении горючего материала. Термическое обезвреживание отходов является химико-технологическим приемом превраш,ения их в нейтральные по отношению к природе продукты и должно стать составной частью современной промышленной технологии. [c.36]

    По аналогичной технологии, при использовании в стадии фосфоросернения продуктов конденсации совместно с бис(алкилфенол) сульфидами, была синтезирована противокоррозионная присадка ИНХП-21, которая содержит не менее 2,8 % фосфора, не менее 4,0% серы, 1,8%—2,2% азота и 9—11 % бария зольность ее 18%. Присадки ИХП-21 и ИНХП-21 заметно улучшают антиокислительные и противокоррозионные свойства масел  [c.53]

    Для снижения дезактивирующего влияния примесей сырья на катализаторы крекинга в последние годы весьма эффективно применяется технология ККФ с подачей в сырье специальных пассиваторов металлов, представляющих собой металлоорганические комплексы сурьмы, висмута, фосфора, олова и других элементов. Сущность пассивации заключается в переводе металлов, осадивщихся на катализаторе, в неактивное (пассивное) состояние, например в результате образования соединения типа шпинели. [c.117]

    За последнее время разработана технология ряда антиокислительных и противоизносных присадок, содержащих серу и фосфор. Некоторые из них находятся лишь в стадии внедрения и освоены пока только на пилотных или полупромышленных установках, поэтому ниже приводятся принципиальные технологические схемы получения этих присадок, составленные на основе литературных материалов. К числу этих присадок можно отнести ВНИИ НП-360, МНИ ИП-22К, ИХП-21, ИНХП-21, Л3-23к, ЛЗ-309, ДФ-1, ДФ-11, ИХП-388, ЭФО и др. По технологии получения многие из этих присадок близки, а установки синтеза имеют однотипные узлы. Примером могут служить процессы взаимодействия сульфида фосфора (V) и исходных или промежуточных продуктов синтеза, а также нейтрализация, сушка и центрифугирование присадок и др. Несмотря на это создание единой технологии для всех фосфорсодержащих присадок затруднительно,"так как каждая присадка имеет свои особенности — различны состав сырья и способы его подготовки, неодинаковы условия синтеза и т. д. [c.231]

    Присадки ИХП-21 и ИНХП-21. Технология синтеза присадок ИХП-21 и ИНХП-21 разработана в ИХП АН АзССР [59, с. 97 248]. Присадка ИХП-21 представляет собой бариевую соль продукта конденсации алкилфенола с формальдегидом и аммиаком, обработанного сульфидом фосфора (V) (фосфоросерненного). Присадка обладает высокой термоокислительной стабильностью и поэтому может улучшать качество многих моторных масел, применяемых для высокофорсированных двигателей. [c.234]

    С целью совершенствования технологии производства диалкилдитиофосфатов цинка рекомендованы оптимальный химический состав сульфида фосфора (V), используемого при фосфоросернении [60, с. 129], очистка цинкдпалкилдитиофосфатных присадок на отечественных фильтрующих порошках [60, с. 123], исключение [c.238]

    Продукты этой отрасли промышленностн отличаются большим много( бразием строения, свойств и областей применения. Это различные углеводороды, хлор- и фторпроизводные, спирты и фенолы, простые эфиры, альдегиды и кетоны, карбоновые кислоты и их прсизводные (сложные эфиры, ангидриды, нитрилы и др.), амины и нитросоединения, вещества, содержащие серу и фосфор, и т. д. По назначению все они подразделяются на две группы ]) промежуточные продукты для синтеза других веществ в этой же илн в других отраслях органической технологии 2) продукты целевого применения в разных отраслях народного хозяйства. [c.9]

    Различие в расходных показателях процессов объясняется, с одной стороны, технологией производств и их отлаженностью, а с другой, свойствами используемых катализаторов. В настоящее время в промышленности используются катализаторы, обеспечивающие выход малеинового ангидрида 68—72% в расчете на пропущенный бензол, но уже имеются катализаторы, позволяющие увеличить выход ангидрида до 75—78%. Это ванадий-молибденовые катализаторы, модифицированные фосфором, титаном, бором и серебром (патентные данные). [c.211]

    Довольно подробно изучена технология окислительного дегидрирования бутенов. Среди большого числа предложенных каталитических систем лучшие результаты получены при использовании катализаторов на основе окисей молибдена и висмута. Эти окиси, взятые по отдельности, обладают низкой активностью, однако в условиях приготовления и эксплуатации взаимодействуют друг с другом с образованием молибдатов висмута. Наибольшей эффективностью обладают катализаторы с атомным отношением Bi Мо, близким к единице. Процесс с использованием висмут-молибденовых катализаторов может осуществляться как в реакторах с неподвижным слоем катализатора (трубчатые), так и в системах с псевдоожиженным слоем. В первом случае в качестве носителя обычно применяется крупнопористый силикагель, а во втором — силиказоль. Для повышения стабильности к катализаторам добавляют небольшие количества соединений фосфора [до 1,5% (масс.) в расчете на Р2О5]. [c.359]

    Производство фосфорных МУ тесно связано с состоянием и развитием технологии фосфора и фосфорной кислоты, так как свыше 90% получаемого фосфора расходуется на производство минеральных удобрений и кормовых фосфатов. Начало отечественной фосфорной промышленности относится к 40-м годам XIX века. К началу XX столетия в стране действовало десять фосфорных заводов, вырабатывавших около 180 т/год фосфора кислототермическим методом. [c.247]

    Однако, несмотря на эти достоинства электроплавки, высокое потребление электроэнергии обусловило использование ее преимущественно для производства легированных и высококачественных (с низким содержанием серы, фосфора, кислорода и других вредных примесей) сталей, в том числе, инструментальных, жаростойких, шарикоподшипниковых и т. п. В последнее время, в связи с внедрением в металлургическое производство электропечей большой мощности (до 400 т), электроплавка стала применяться И для получения рядовых углеродистых сталей по упрощенной технологии с их последующим переплавом. [c.87]

    С точки зрения ресурсосберегаюш,ей и безотходной технологии исключительно важна реакция взаимодействия паров фосфора с водяным паром при 700 С в присутствии катализатора (мелкораздробленная медь)  [c.275]

    Для процессов с относительно низким и ол, например, выплавка Ре31, электрический к. п. д. равен 0,85—0,9, а для таких, как возгонк<э фосфора, где и ПОЛ выше, он равен 0,9—0,95. Величину / акт обычно задают технологи, исходя из желательной производительности агрегата Л/ т/ч и достигнутого на данное время удельного расхода электроэнергии А кет ч1т  [c.127]

    Магнитные свойства Наличие фосфора в никелевом покрытии сильно сказывается на магнитных свойствах покрытия Магнитные свойства осадков никеля, полученных из кислых и щелочных растворов, определяются технологией их получения химическим составом и структурным состоянием Например магнитные свой ства покрытия с 3 %-ным содержанием фосфора приближаются к магнитным свойствам электролитического никеля в то время как покрытие с II %-ным содержанием его немагнитно Термообработанные покрытия при прочих равных условиях более магнитны чем нетермообработанные [c.18]

    ПЕЧИ в химической технологии, высокотемпературные хпм. реакторы, в к-рых в результате горения топлива и.и преобразования электрич. эпергии выделяется тепло, ис пользуемое для хим. превращепий или для обезвреживанш отходов, загря.зняющих окружающую среду. В П. осуше ствляют обжиг, сжигание серы, фосфора, пиролиз нефти, нефтепродуктов, дистилляцию, коксование, получение м нер. солей, цементного клинкера и др. [c.436]


Смотреть страницы где упоминается термин Фосфор в технологии: [c.23]    [c.115]    [c.76]    [c.13]    [c.222]    [c.144]    [c.145]    [c.363]    [c.148]    [c.137]    [c.166]    [c.151]    [c.320]    [c.321]   
Химия изотопов Издание 2 (1957) -- [ c.448 , c.450 , c.454 , c.461 ]




ПОИСК







© 2024 chem21.info Реклама на сайте