Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метила перенос

    Эфирный раствор метилмагнийиодида. В круглодонную колбу на 250 мл, снабженную шариковым холодильником, вносят 4 г магниевых стружек и 50 мл абсолютного эфира. Через холодильник прибавляют по каплям из капельной воронки смесь свежеперегнанного иодистого метила и 50 Л1Л абсолютного эфира. Если после добавления 1—2 мл смеси реакция не начинается, в колбу вносят кристаллик иода и осторожно подогревают до начала реакции. Дальнейшее прибавление иодистого метила ведут с такой скоростью, чтобы не происходило слишком бурного кипения. После того как весь иодистый метил прибавлен., продолжают нагревание в течение часа при слабом кипении эфира до окончания реакции. Реакционную смесь переносят в мерный цилиндр с пробкой, разбавляют абсолютным эфиром до 200 мл и оставляют отстояться. Таким образом получают примерно 0,5 н. раствора метилмагнийиодида. [c.282]


    Имеющихся данных недостаточно, чтобы определенно показать, что бромистый алкил подвергается конденсации с бутанами так, например, ни в одном из опытов не указано количества непрореагировавшего метил-или этилбромида, а также количества образовавшегося метана. Весьма вероятно, что продукты реакции образовались в результате реакций переноса водорода и диспропорционирования. [c.333]

    В исследованном интервале температур, как это видно из данных таблицы, основная масса аргона и метана переносится путем кнудсеновской диффузии. [c.134]

    Число этих превращений было дополнено новыми рядами реакций Na с хлорзамещенными метана, переноса Н от углеводородов парафинового ряда к радикалу СНд. Для каждого из названных рядов найдены характерные значения а ш А. [c.247]

    Образование метана. Известно, что при карбонилировании метанола на родиевых катализаторах образуются следы метана, но эту реакцию подробно не изучали. На рис. 10 показан предполагаемый механизм, включающий межмолекулярный перенос метила. Согласно этому механизму, скорость образования метана обратно пропорциональна парциальному давлению монооксида углерода. [c.306]

    Отбор метано-нафтеновой фракции ведут до тех пор, пока показатель преломления раствора на выходе из колонки не станет равным показателю преломления чистого растворителя. После этого досыпают еще немного свежего силикагеля и заливают в колонку бензол. Снова отбирают фракции и проверяют показатель преломления. Отбор прекращают, когда из колонки будет вытекать чистый бензол. После этого в том же порядке десорбируют смолы ацетоном или спирто-бензольной смесью. Иногда для этого весь силикагель из колонки переносят в аппарат Сокслета, где и проводится экстракция смолистых веидеств. От всех отобранных фракций отгоняют растворитель вначале под атмосферным давлением в токе инертного газа, а в конце под вакуумом, но при температуре не выше 100 °С. Все выделенные фракции взвешивают, и в них снова определяют показатели преломления. [c.70]

    В инил-1-метилпиперидин. 8 г 2-(Р-оксиэтил)-1-метил-пиперидина и трехкратное количество концентрированной соляной кислоты помещают в запаянную трубку и нагревают при 165—175° в течение 2 час. Содержимое трубки переносят в чашку, упаривают, осторожно прибавляют разбавленный раствор едкого натра, переносят в колбу и перегоняют с водяным паром. Отделяют органический слой, сушат едким кали и дважды перегоняют в вакууме [3611. [c.271]

    Принципиальная схема транспортного детектора представлена на рис. 11.20. Проволока, лента или специальная цепь непрерывна движется и захватывает вытекающий из колонки раствор. Далее лента подается в печь, нагретую до температуры, обеспечивающей испарение элюента. Для удаления испарившегося элюента в печь непрерывно подается ток азота. Оставшиеся на ленте анализируемые вещества переносят в реактор, в котором они подвергаются пиролизу в токе азота или окислению до диоксида углерода в токе кислорода. Продукты пиролиза током азота переносятся в пламенно-ионизационный илн другого типа детектор. Продукты окисления током кислорода переносятся в реактор с никелевым катализатором, где диоксид углерода конвертируется в токе водорода дс метана, который затем детектируется пламенно-ионизационным детектором. После прохождения реактора лента протягивается через печь, где она очищается от оставшихся веществ или примесей. [c.95]


    Различия в составе изомеров в опытах с серной кислотой и хлоридом алюминия, по-видимому, объясняются конкуренцией между скоростями внутримолекулярных гидридных переносов и реакции алкилирования. Образующиеся в присутствии серной кислоты вторичные метилциклогексилкарбониевые ионы с большей скоростью превращаются в наиболее устойчивые третичные карбокатионы, которые атакуют ароматическое кольцо, в то время как в присутствии хлорида алюминия скорость реакции алкилирования значительно выше скорости внутримолекулярной изомеризации. Проведение экспериментов с [1- С]метил-циклогексаном в присутствии серной кислоты и хлорида алюминия подтвердило предположение о наличии межмолекулярного гидридного переноса в условиях реакции алкилирования выделенные 1,1- и 1,3-метилфенилциклогексаны радиоактивны (табл. 4.12). Это свидетельствует об обмене между промежуточ- [c.121]

    На рис. В.ЗО схематически показан механизм образования связи атома металла с молекулой азота. Он предусматривает активирование молекулы N2 и затем ее связывание в мягких условиях. Аналогичным образом объясняется действие соединений ( -элементов как катализаторов в процессах синтеза аммиака или при связывании азота микроорганизмами. Сначала происходит образование донорно-акцепторной связи о-типа. Это требует переноса электронной плотности за счет перекрывания занятой орбитали атома азота (свободная пара электронов) с незанятой орбиталью атома металла. Далее происходит перекрывание заполненных йп- или с я —рл-орбиталей атома метал- [c.531]

    Гидрофобные взаимодействия обусловлены не какими-либо особыми силами, а скорее специфическими особенностями систем, в которых они наблюдаются. Эти взаимодействия возникают, например, между двумя молекулами метана в воде или между ме-тильными группами в длинной цепочечной молекуле полимера. И хотя несомненно, что силы Ван-дер-Ваальса или водородные связи вносят некоторый вклад в подобного рода взаимодействия, все же в основном они определяются свойствами и природой растворителя. Для приблизительной оценки таких сил пользуются моделями. Так, если в результате конформационных изменений открытая цепь полимера, содержащего метильные группы, образует клубок, то две метильные группы могут образовать димерную систему или стать составной частью ассоциата, включающего много таких групп. В этом случае подходящей моделью процесса будет перенос молекулы метана нз водной среды в углеводородную (т. е. определение энергии переноса молекулы метана из воды в углеводород, например в гексан). Такие приемы, конечно, дают лишь приближенные значения энергии гидрофобных взаимодействий, но тем не менее они, несомненно, полезны. [c.269]

    В 3-литровую трехгорлую колбу, снабженную механической мешалкой с затвором, обратным холодильником и делительной воронкой с приспособлением для выравнивания давления (примечание 3), помещают 48 г (2 г-атома) магниевых стружек, 500 мл абсолютного эфира и небольшой кристаллик йода. Холодный раствор бромистого метила переносят в делительную воронку и при перемешивании медленно прибавляют к магнию. Реакция начинается самопроизвольно, после чего оставшееся количество бромистого метила прибавляют с такой скоростью, чтобы раствор спокойно кипел. Обычно прибавление заканчивается через 1—2 часа, и весь магний к этому времени должен раствориться. К раствору бромистого метилмагния, хорошо охлажденному в бане со льдом, медленно в течеиие 30 мин. прибавляют при перемешивании раствор 78,0 г (0,5 моля) лактона у-оксинонаноБОЙ кислоты (примечание 4) в 100 мл абсолютного эфира. Когда прибавление будет закончено, смесь помещают на паровую баню и кипятят с обратным холодильником в течение 2 час. Затем обратный холодильник заменяют на нисходящий (примечание 5) и эфир отгоняют. [c.32]

    Упомянем прежде всего о метилтрансферазах (шифр 2.1.1), перенося-ш,их метил (переносится, в частности, метильная группа молекулы метионина). Примером может служить никотинамид-метилтрансферааа, которая катализирует реакцию метилирования никотинамида по гетероциклическому азоту, перенося метил с метионина, связанного в 8-аденозилме-тионин. Последний превращается при этом в З-аденозилгомоцистеин  [c.744]

    Данные, полученные методами перемещающейся границы и Гитторфа, совпадают, Ю, П, Степанов, А, И. Горшков ире ,дожили недавно (1980) новый метод измерения подвижности и чисел переноса ноиных компонентов — метод изотопной границы, в котором метятся как ионный компонент, так и вода. По изменению положения изотопных меток после пропускания некоторого количества электри-чрства определяются обе искомые величины. Еще один метод нахождения чисел переноса, основанный на измерении э, д. с,, рассматривается ниже, [c.109]

    Эти данные создают трудности для любого простого объяснения. Большая разница в трудности переноса неопентила по сравнению с этилом дает основание предположить, что перенос идет по механиЗА1у бидюле-кулярного замещения. Сохранение структуры в группах / -пропила и втор-бутила также подтверждает такой механизм. С другой стороны, значительное увеличение легкости реакции переноса в ряду метил < этил< изопропил < трет-бутил находится в противоречии с данными, которых следовало бы ожидать для этого механизма, и говорит в пользу карбоний-ионного механизма. [c.443]


    На первой стадии происходит диссоциативная адсорбция метана с образованием метильного радикала, на второй стадии метильн1)1Й радикал превращается в ион карбоксила, который мод влиянием кислотного центра соседней ОН-груп-пы может десорбироваться в виде формальдегида (третья стадия). Ион карбоксила может распадаться и в другом направлении - до СО и воды, либо отщепляться в виде формиата. Отрыв частицы продукта реакции и присоединение атомов кислорода по месту освободившихся связей осуществляется в однохм элементарном акте по механизму сопряженного переноса  [c.17]

    Для того чтобы показать реальность этого вида первичной миграции, необходимо обосновать реальность его отдельных этапов. Главными из них являются извлечение рассеянных УВ из материнских пород газами и перенос УВ в виде раствора в газе в коллектор. Для выяснения первой стадии процесса проведено большое число работ с породами различного возраста, различного литологического состава, богатыми и бедными ОВ и УВ. Эти работы опубликованы и потому можно остановиться только на их основных выводах. В большинстве случаев исследования осу-шествлялись со смесями метана с пропаном (20—25%) при 100°С и 300 кгс/см . Для сравнения помимо газовой экстракции все исследуемые породы экстрагировались в течение 50 ч хлороформом. [c.122]

    Наблюдаемое перераспределение радиоактивной метки указывает на то, что внутримолекулярные гидридные переносы в выбранных условиях протекают значительно быстрее реакции алкилирования. Метильная группа, а тем более этильная, смещаются значительно медленнее, чем протекает гидридный перенос. Кроме того, снижение скорости миграции метила объясняется еще и тем, что наиболее стабильным является третичный метилциклогексил-катион, что приводит к образованию 1-метил-1-фенилциклогексана. Например, при алкилировании бензола в присутствии 96%-й Н2804 при 5°С [1- С]метилциклогекса НО-лом-1, [2-1 С] метилциклогексанолом-2 и [1- С] метилциклогек-сеном-1 образуется лишь 1,1-метилфенилциклогексан, в а-углеродном атоме которого содержится =70% радиоактивности исходного спирта. Подобные результаты можно объяснить быстро наступающим равновесием между промежуточными вторичными и третичными метилциклогексил-катионами за счет внутримолекулярных гидридных и алкильных переносов. Такое же распределение радиоактивности наблюдается при алкилировании бензола [1- С] метнлциклогексаном-1. [c.120]

    Миграция метильной и этильной групп протекает преимущественно в результате внутримолекулярных переносов, тогда как группы изопропила и трег-бутила мигрируют в значительной степени межмолекулярно. Эта тенденция к перегруппировке из а- в более стабильный р-изомер, изменяется в ряду трет-бу-тил>изопропил>этил>метил. Алкилирование нафталина и конкурентное взаимодействие бензола и нафталина с алкилгалогенидами в присутствии растворителей и катализаторов представлены в табл. 4.20—4.22, Данные по изомеризации алкилнаф-талинов приведены в табл, 4,23. [c.156]

    Образующиеся побочные продукты —полизамещенные бензолы, обладающие высокой основностью, полициклические ароматические соединения и смолы дезакти уют катализаторы либо связывают их в прочные комплексы Выход целевых продуктов может быть снижен и за счет вторичных превращений, в частности внутримолекулярных переносов алкильных групп с изменением соотношений орто-, мета- и лара-изомеров, межмолекулярных переносов алкильных групп и скелетных перегруппировок алкильных груш Закономерности этих реакций будут рассмотрены в данной главе. Следует отметить, что подобное разделение несколько условно, так как при скелетных и изотопных перегруппировках заместителей одновременно протекают и их межмолекулярные переносы. [c.163]

    Во втором классе (трансферазы) ферменты, действующие на полимерные субстраты, представлены в основном группой метил-трансфераз (КФ 2.1.1), переносящих метильную группу на полисахариды, нуклеиновые кислоты и белки ацилтрансфераз (КФ 2.3.1), которые переносят ацильные остатки на ряд белков гликозилтрансфераз (КФ 2.4), куда входят несколько десятков ферментов, переносящих остатки гексоз, пентоз и других глико-зильных групп от полисахаридов на подходящие акцепторы и, наоборот, от подходящих доноров на полисахариды или белки. [c.7]

    Механизм изомеризации алкилбензолов, предложенный на основании исследований перегруппировок [2- С]-н-пропилбен-зола, позволяет довольно убедительно объяснить, почему при обработке вгор-бутилбензола и изобутилбензола сравнительно быстро образуется смесь этих продуктов и лишь следы трет-бу-тилбензола [149, с. 640]. Для образования последнего требуется, по-видимому, гидридный перенос, тогда как из схемы видно, что для образования изобутилбензола достаточно миграции метила  [c.192]

    В литературе имеется много подтверждений, когда реакции межмолекулярных переносов алкильных групп, особенно в присутствии больших количеств катализаторов и при повышенной температуре, сопровождаются изменениями углеродной структуры. При контакте А1С1з с изопропилбензолом и егор-бутил-бензолом при 100°С наблюдается образование н-пропил- и изо-бутилбензолов соответственно. Перегруппировки могут протекать по механизму, подобному изомеризации 2-метил-З-фенилбу-тана в 2,2-диметил-1-фенилпропан  [c.200]

    Следовательно, постоянными будут и коэффищенты переноса. Находим среднеинтегральную по сечению наблвдаемую скорость реахщии ш с учетом порозности слоя катализатора. После этих преобразований получаем систему дифференциальных уравнений с постоянными коэффициентами, которая сравнительно легко может быть решена численными методами. Находятся среднеинтегральные температура и наблвдаемая скоростьшреакции в объеме рассматриваемого участка, а также средняя скорость и теплофизкческие свойства по средней температуре.По этим уточненным значениям т, Р, м,ш снова производится решение системы уравнений. Результаты второго решения считаются достаточно точными. Находится средняя по радиусу концентрация метана на длине I и сте- [c.151]

    СзНа = (СНз) -f С2Н5 СзНв = СНз + ( гНз) , причем избыток энергии переносится одним из радикалов, предпочтительно большим, сообразно числу колебательных степеней свободы, по которым может распределяться энергия. Действительно, наблюдаемое отношение количеств образовавшихся алканов и алкил-радикалов согласуется с отношением колебательных степеней овободы этил- и метил-радикалов (5 2). [c.75]

    Мета-производные являются продуктами аномального замещения, образовавшиеся путем прямой изомеризации орто- и парапроизводных или из 1,2,4-триалкилбензолов путем отщепления алкильной группы от пе рвого С-атома или переноса первой алкильной группы в другое ядро, как представлено схемой  [c.68]

    Подготовка катионитов. Товарный образец измельчают, просеивают и отбирают определенную фракцию. Катиониты заливают пятикратным по объему количеством насыщенного раствора хлорида натрия и оставляют для набухания на 24 ч. После декантации катионит переносят в делительную воронку и промывают не менее пяти раз 5%-ным раствором соляной кислоты. Общий объем промывающего раствора должен быть больше объема катионита в 30 раз. При каждой промывке катионит взбалтывают с раствором и оставляют на 2 ч, периодически перемешивая. После пятого промывания соляной кислотой катионит промывают дистиллированной водой до нейтральной реакции по мети.иовому оранжевому. Такая подготовка переводит катионит в Н+-форму. Отмытый от кислоты катионит отфильтровывают на воронке Бюхнера, подсушивают на фильтровальной бумаге до состояния свободного отделения зерен друг от друга и хранят в банке с притертой пробкой. [c.119]

    Если потребуется определить структуру алифатического сульфида, то сульфид подвергают в реакторе на никеле Ренея гидрогенизации, в результате чего образуются сульфид никеля и углеводороды, соответствующие радикалам сульфида. Например, метилфенил-сульфид в результате гидрогенизации дает смесь метана и бензола. По выходе из реактора смесь потоком водорода, который одновременно служит гидрирующим агентом и газом-носителем, переносится в колонну, в которой разделяется. Идентифицируя по полученной хроматограмме углеводороды, нетрудно установить строение исходного сульфида. [c.199]

    Кофер.иенты часто участвуют в переносе электронов или функциональных групп (водородный атом, ацетил, метил, аминогруппы и т.д.). Как и витам ины, коферменты входят в качестъе необход1и юго компонента в пищу. [c.274]

    Проверим теперь возможность переноса найденного значения Р = 0,84 на расчеты ЛГ , ,1Для адсорбции других алканов и цикланов цеолитом NaX того же состава. Рис. 11.6 показывает, что для метана и пропана расхождение результатов расчета (линии) с экспериментальными результатами (точки) не превышает погрешно- [c.215]

    Травление медной фольги проводят следующим образом. Очищенный кусочек фольги помещают в бюкс с раствором персульфата аммония. Время, необходимое для того, чтобы растворить поверхностный слой, состоящий из пеупорядоченных атомов метал.ла (время травления), составляет 2- 3 мин. Об окончании процесса травления монаю судить по изменению внешнего вида поверхности медной фольги поверхность меди должна иметь равномерный матовый оттенок. Протра]шеш1ую фольгу с помощью пинцета переносят в другой бюкс с бидистиллированной водой. После многократной промывки фол1>гу высушивают па воздухе. [c.200]


Смотреть страницы где упоминается термин Метила перенос: [c.703]    [c.336]    [c.532]    [c.23]    [c.233]    [c.276]    [c.178]    [c.217]    [c.75]    [c.182]    [c.302]    [c.274]    [c.95]    [c.130]    [c.199]    [c.443]   
Биоорганическая химия ферментативного катализа (1987) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

метил фенилпропионитрила связанного переноса



© 2024 chem21.info Реклама на сайте