Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинк плавленый

    Хлористый кальций безводный. . Едкий натр плавленый. . . . . Купоросное масло 959 -ное. ... Хлористый цинк плавленый. . .  [c.244]

    Хлористый цинк (плавленый), г. .. . 3,7 [c.291]

    Температура плавления Легкоплавкие металлы (т. пл. < 1000 °С) Калий (т. пл. = 63,5 °С) Цинк ( т. пл. = 232 °С) Тугоплавкие металлы (т. пл.> 1000 °С) Медь (т. пл.= 1083 Железо (т. пл.= 1535°С [c.13]


    Сырьем служит металлический цинк удельная масса 6,9— 7,2 кг/м , температура плавления 419,4 °С, температура кипения 930 °С, теплота плавления 125,1 кДж и теплота испарения 1624 кДж. Нагретый выше 900 °С цинк сгорает зеленоватым пламенем в окись-цинка. Металл, полученный металлургическим методом (марки не ниже Ц-3), содержит 98,7% цинка и до 1,3% примесей (1% свинца и до 0,2% кадмия). Металл, полученный электролитическим способом (марки Ц-0, Ц-1 и Ц-2), содержит до 99,9% цинка и не более 0,1% примесей. Содержание свинца в таком цинке не превышает 0,05% и кадмия 0,02%.  [c.149]

    Для каждой термопары существует характеристика, получаемая при ее калибровке. Калибровке следует подвергать пе только новые термопары, но и бывшие некоторое время в употреблении. Калибровку осуществляют по эталонному потенциометру. В лабораторных условиях можно также проводить калибровку, определяя несколько темнературных точек (температуры кипения или плавления химически чистых веществ). В качестве таких эталонов используют дистиллированную воду (для точки 100 С), нафталин, свинец, цинк, сурьму и др. Температуры кипения или затвердевания некоторых из этих веществ следующие (в °С)  [c.15]

    При некоторой определенной температуре ориентация нарушается. На платине дезориентация начинается при температуре на 10° ниже точки плавления кислоты. На активных поверхностях (цинк, кадмий, медь, сталь) дезориентация начинается только тогда, когда температура намного превышает точку плавления кислоты (рис. 32). [c.151]

    Для меди и цинка затрата энергии на ионизацию свободных атомов и выигрыш ее при гидратации ионов близки. Но металлическая медь образует более прочную кристаллическую решетку, чем цинк, что видно из сопоставления температур плавления этих металлов цинк плавится при 419,5 °С, а медь — только при 1083 °С. Поэтому энергия, затрачиваемая на атомизацию этих металлов, существенно различна, вследствие чего суммарные энергетические затраты на весь процесс в случае меди гораздо больше, чем в случае цинка, что и объясняет взаимное положение этих металлов в ряду напряжений. [c.330]

    Свойства ртути резко отличаются от свойств 2п и С(1 и вообще исключительны для металлических веществ. Ртуть имеет очень низкие температуру плавления и величину электрической проводимости. Наблюдается также очень резкое падение химической активности металлов при движении по подгруппе сверху вниз цинк и кадмий в ряду напряжений стоят до водорода, а ртуть — после. [c.307]

    Эксперименты с растяжением монокристаллов цинка вместе с тем поставили и новые вопросы. Например, влияет ли на проявление эффекта агрегатное состояние наносимой металлической пленки Чтобы ответить на этот вопрос, опыты проводили при температуре ниже температуры плавления металлопокрытия. При замораживании ртутной пленки нанесенной на монокристаллический цинк, снижения прочности и хрупкости цинка уже не наблюдалось. Следовательно, для проявления адсорбционного понижения прочности твердого [c.221]


    В обычных условиях цинк и каДмий—твердые вещества, ртуть — жидкость. Температуры плавления и кипения падают от цинка к ртути, т. е. в сторону увеличения заряда ядра. [c.416]

    Эти металлы проявляют степень окисления +2, диамагнитны, имеют довольно высокие значения плотности и невысокие температуры плавления. Ртуть —единственный металл, затвердевающий ниже нуля (—38°С). Она отличается от цинка и кадмия пониженной химической активностью. Металлические свойства у цинка, кадмия и ртути выражены слабо. Цинк проявляет амфотерные свойства. [c.205]

    У меди, как и у элементов подгруппы цинка (цинк, кадмий, ртуть), структура жидкой фазы почти не отличается от структуры твердой, если сравнивать их при температурах, близких к точкам плавления. [c.239]

    Общие сведения. Цинк, кадмий, ртуть являются последними представителями -переходных элементов в периодах. Это обстоятельство, а также специфика полностью завершенной ( °) орбитали накладывают на химию этих элементов определенные особенности. С одной стороны, они еще похожи на своих предшественников по периоду, с другой — в большей мере, чем другие -элементы, похожи на элементы главной группы (НА). Например, сульфат цинка очень похож на сульфат магния, а его карбонат — на карбонат бериллия. Общими для всех элементов главной и побочной подгрупп второй группы являются близость оптических спектров и сравнительно низкие температуры плавления металлов. С медью, серебром и золотом элементы подгруппы цинка роднит следующее. Как и элементы подгруппы меди, они дают комплексы с МНз, галогенид- и цианид-ионами (особенно 2п и С(1). Из-за сильного эффекта взаимной поляризации их оксиды окрашены, достаточно непрочны. Электрохимические свойства в ряду 2п—Сё—Нд изменяются аналогично их изменению в ряду Си—Ад—Аи. Они легко дают сплавы. [c.555]

    В виде простых веществ цинк, кадмий и ртуть представляют собой серебристо-белые металлы, поверхность которых покрыта оксидной пленкой. Ртуть является в нормальных условиях жидким металлом, так как имеет низкую температуру плавления (- 39° С). [c.22]

    Высокотемпературный метод применим для нанесения покрытий из легкоплавких металлов на металлы с более высокими температурами плавления. Так, для нанесения защитного металлического покрытия на сталь ной лист его погружают в расплавленный металл (и вынимают также) через слой флюса или масла, закрывающий поверхность жидкого мета лла (Sn, Zn, РЬ), чтобы поверхность сразу не окислилась. Цинк и олово хорошо смачивают сталь, а к свинцу добавляют немного олова, так как свинец плохо смачивает стальную поверхность. [c.405]

    Цинк — тяжелый металл голубовато-белого цвета с металлическим блеском, плотность его 7100 кг/м температура плавления 419,4° С. В холодном состоянии он весьма хрупок. При температуре 100—180° С цинк становится ковким. При этих температурах [c.61]

    Нитробензол настолько инертен к ацилированию и так хорошо растворяет хлористый алюминий, с которым образует комплекс типа оксониевой соли, что его часто применяют в качестве растворителя при проведении конденсаций по Фриделю—Крафтсу с другими ароматическими соединениями. Перемещение замещающих групп, наблюдаемое при алкилировании, не происходит при синтезе кетонов, и реакции с хлорангидридами и ангидридами протекают обычно с лучшими выходами, чем с галоидными алкилами. Как уже упоминалось, для синтеза карбонилсодержащих соединений требуется большее количество катализатора, однако в отношении применимости и эффективности различных катализаторов сохраняется та же зависимость. Так, хлористый алюминий и здесь является самым сильным из обычно употребляемых катализаторов хлорное олово и трехфтористый бор действуют слабее, но достаточно эффективно, а плавленый хлористый цинк очень мало активен. Более слабые катализаторы применяют тогда, когда желательно ослабить течение реакции. Например, тиофен настолько реакционноспособнее бензола, что в значительной мере полимеризуется в реакционной смеси, содержащей хлористый алюминий, и поэтому ацилирование тиофена лучше проводить в присутствии менее активного катализатора — четыреххлористого олова  [c.175]

    Плавленый хлористый цинк получают, расплавляя обычный продажный хлористый цинк в фарфоровой чашке на открытом пламени. Для полного обезвоживания температуру плава доводят до 350—400 , после чего плав выливают в холодную ступку и быстро измельчают. Хлористый цинк очень гигроскопичен, поэтому следует работать быстро. [c.775]

    К электролитическому цинку, расплавленному при 400°, добавляют постепенно, в несколько порций, мелкие, незаржавленные железные стружки. Во время сплавления нужно следить, чтобы сплав не перегревался, учитывая температуры плавления для системы железо—цинк. После добавления 12,5% железа содержимое тигля нагревают до 900°. Нужно применять избыток цинка в несколько процентов, так как при сплавлении цинк улетучивается. Сплавление продолжается около 3 часов. Приготовленный сплав после перемешивания с. расплавленной солью выливают в нагретый толстостенный железный тигель, на дне которого находится расплавленная соль, и охлаждают под слоем поваренной соли это позволяет избежать образования кристаллов цинка. [c.845]


    Кристаллический порошок белого цвета с желтоватым оттенком, ограниченно растворим в воде. Малотоксичен. Относится к летучим ингибиторам атмосферной коррозии. Температура плавления 125—135° С. Защищает от атмосферной коррозии серебро, никель, олово, алюминий, медь. Не полностью защищает оксидированный магний, кадмий, цинк и железо. На упаковочные материалы, деревянную тару краски, органические покрытия, текстиль, кожу отрицательного действия не оказывает [c.105]

    Кристаллическое вещество ярко-желтого цвета. Температура плавления 127° С. Содержание основного вещества не менее 98%, pH 1%-ного водного раствора — 7,5—8,5. Растворимость ингибитора прн 25° С в воде — 4,0, этаноле—1,0 г/100 г. Защищает от коррозии изделия из стали, чугуна, никеля, алюминия и его сплавов, серебра. Не защищает цинк, кадмий, магний и его сплавы. Воздействует на текстиль, дерево, пластик, бумагу, вызывает изменения окраски [c.106]

    Алюминий используют для нанесения покрытия на сталь в расплавленном состоянии, так как точка плавления стали значительно выше точки плавления алюминия. На сплавы алюминия покрытие из чистого алюминия следует наносить путем металлизации или плакировки. Если в качестве покрытия используют хром, то при электроосаждении непосредственно на основной металл обычно получают покрытие с неравномерной защитой основного металла. Если основной металл — сталь, то на грунтовое никелевое покрытие наносят хромовое покрытие если основной металл — цинк, то на грунтовое медное покрытие наносят никелевое покрытие. На алюминий после химического цинкования наносят слои медного и никелевого покрытия. [c.126]

    После хрома такого повышения прочности связи не наблюдается. Вместо этого прочность, твердость и другие свойства переходных металлов остаются по существу постоянными для пяти элементов — хрома, марганца, железа, кобальта и никеля такое положение вполне согласуется с небольшим изменением их условной идеальной плотности,, показанным на рис. 17.3. (Низкое значение для марганца связано с необычной кристаллической структурой этого металла подобной структуры не имеет ни один другой элемент.) Таким образом, можно сделать вывод, что металлическая валентность более не возрастает, а остается для этих элементов равной шести. Затем после никеля металлическая валентность вновь уменьшается в последовательности медь, цинк, галлий и германий, как это показывает быстрое уменьшение идеальной плотности (см. рис. 17.3) и соответствующее снижение значений твердости, температуры плавления и других свойств. [c.494]

    Наиболее примечательными свойствами цинка, Zn, кадмия, Сс1, и ртути, Hg, является их слабое сходство с остальными металлами. Все эти металлы мягкие и имеют низкие температуры плавления и кипения. Ртуть-единственный металл, представляющий собой при комнатной температуре жидкость. Цинк и кадмий напоминают по химическим свойствам щелочно-земе льные металлы. Ртуть более инертна и похожа. на Си, А и Аи. Ддя всех трех элементов, 2п, Сс1 и Н , характерно состояние окисления -Ь 2. Ртуть также имеет состояние окисления + 1 в таких соединениях, как Н 2С12. Но ртуть(1) всегда обнаруживается в виде димерного иона причем рентгеноструктурные и магнитные исследования показывают, что два атома Hg связаны друг с другом ковалентной связью. Таким образом, ртуть имеет в Hg2 l2 степень окисления -I- 1 лищь в том же формальном смысле, в каком кислород имеет степень окисления — 1 в пероксиде водорода Н—О О—Н. [c.449]

    Атмосферной коррозии подвергаются металлоконструкции. Методами борьбы с атмосферной коррозией являются окраска и антикоррозионная металлизация. Срок службы лакокрасочных покрытий составляет 3—4 года, покрытий из напыленного металла — 8—10 лет. Для напыления используются в основном цинк и алюминий, которые имеют относительно низкую температуру плавления. Толщина напыленного слоя обычно равна 50—500 мкм. Напыленный слой дополнительно окрапшвается. [c.49]

    Физические и химические свойства. Цинк, кадмий и ртуть — тяжелые металлы. Ртуть — жидкий при обыкновенных условиях металл его температура плавления около —39°С. Значения физ -ческих свойств щи1ка, кадмия и ртути приведены в табл. 37. [c.329]

    По физическим свойствам цинк, кадмий и ртуть резко отличаются от щелочноземельных металлов. Плотности н атомные объемы возрастают от цинка к ртути, а температуры плавления и кипения в том же направлении снижаются. Теплоты сублимации цинка, кадмия и ртутн в 1,3—2,7 раза меньше, чем у кальция, стронция и бария этим объясняется большая летучесть цинка, кадмия и ртути. [c.330]

    Электролитическое рафинирование магния подобно рафинированию алюминия. Его проводят в электролизере с тремя слоями массы. Часто для утяжеления рафинируемого металла к нему до-бавляю1Т медь, цинк и другие металлы, при этом плотность сплава возрастает до 2—2,3 г/см . Рафинирование ведут при 720 °С, т. е. выше температуры плавления магния, в электролите, содержащем 10—15% Mg b, 10% ВаСЬ, 40—50% Na l и 30—40% КС1. Электролизер снабжен стальными катодами и графитовыми анодами. Плотность тока /а = 0,6—0,8 А/см , г = 0,6—1 А/см . Напряжение на ванне 4—4,5 В, выход по току 90—95%, расход энергии [c.518]

    Физические свойства. Цинк, кадмий и ртуть являются тяжелыми металлами. Ртуть — единственный жидкий при обыкновенных условиях металл температура плавления его около —39° С. Плотности и атомные объемы возрастают от цинка к ртути, а температуры плавления и кипения в том же направлении падают. По физическим свойствам эти металлы резко отличаются от щелочноземельных металлов (см. табл. 4). Теплоты сублимации цинка, кадмия и ртути соответственно равны 131,38 112,97 и, 64,64 кдж1г-атом. Они в 1,3—2,7 раза меньше, чем у кальция, стронция и бария, и этим объясняется большая летучесть этих металлов. При температурах, близких к абсолютному нулю, цинк (0,84° К) и ртуть (4,12° К) являются сверхпроводниками. [c.161]

    Установка для зонной плавки установка для измерения электропроводности четырехзондовым методом кварцевые ампулы, тигельные шипцы печь для сплавления лодочки из плавленого кварца установка для вакуумирования и запаивания ампул металлы полупроводниковой чистоты индий, сурьма, олово, цинк. [c.94]

    Фильтрование. Эффективна очистка галлия от ряда примесей фильтрованием через пористую перегородку. Способ основан на очень малой растворимости большинства металлов в галлии при температуре, близкой к температуре его плавления. При этой температуре примеси в основном находятся в виде взвеси мелких частичек — как самого элемента, так и его окислов или соединений с галлием ( uGaa, FeGaa, NiGa4 и т. п.). По данным [ПО], растворимость при 50° у меди 2,8-10 %, у никеля 6,0-10 , у титана 2,2-10 , у хрома 1,2-10 и у железа 1,0-10" %. Фильтруют через стеклянную или винипластовую перегородку. Оптимальный диаметр пор 30—50 мк [3]. Этим способом содержание примесей железа, меди, кремния и многих других можно снизить до тысячных и даже десятитысячных долей процента. Цинк и свинец при фильтровании не удаляются [108]. [c.264]

    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]

    Двуокись теллура образует бесцветные кристаллы, плавящиеся при 733° С, переходя в темно-красную жидкость ДЯ испарения ее 55 ккал/моль, а теплота плавления 3 ккал/моль. Получается двуокись теллура при обезвоживании теллуристой кислоты, при сжигании Те в кислороде и при разложении 2Те0г НЫОз при 400° С. В воде ТеОг хорошо растворяется при 500° С ТеОг окисляет уголь, алюминий, цинк. [c.217]

    Смысл определяющего влияния ФЭК на состав и структуру электронных соединений можно понять с привлечением представлений зонной теории. Каждой кристаллической структуре отвечает характерный для нее зонный энергетический спектр электронов. Валентная зона заполняется электронами не беспредельно и вмещает только определенное их число. По заполнении зоны наступает такой момент, когда энергия электронов так резко повышается, что данная структура оказывается нестабильной и происходит изменение кристаллического строения сплава. Возникаюшдя при этом новая структура будет соответствовать большей электронной концентрации. В качестве примера рассмотрим систему медь — цинк (рис. 114). Чистая медь имеет ГЦК-структуру (кубическая плотнейшая упаковка). При плавлении меди с возрастающим количеством цинка (до 37%) атомы цинка замещают часть атомов меди статистически без изменения типа кристаллической структуры матрицы. Образуется -твердый раствор, которому отвечает вполне определенная область электронной концентрации. Эта [c.220]

    Цинк и кадмий — серебристо-белые металлы. Плотность цинка — 7 133 кг/мЗ, температура плавления 419,5 °С. У кадмия плотность равна 8 650 кг/м , а температура плавления 321,1 °С. Во влажном воздухе и воде цинк и кадмий пассивируются, покрываясь пленками гидрооксикарбоната цинка или оксида кадмия соответственно. Оба металла реагируют с минеральными кислотами и влажными галогенами, солями аммония. Цинк растворяется в концентрированных растворах щелочей. [c.263]

    Печи для плавки сплавов на основе меди. Канальные индукционные печи для плавки и подогрева меди и спла ВОВ на медной основе (латуни, бронзы, томпака, мель хиора и т. п.) изготавливаются как периодического, так и непрерывного действия (миксеры). Корпус печи кон струируется прямоугольной или цилиндрической формы В последнее время применяют печи барабанного типа со сменными индукционными единицами. На рис. 3.10 при ведена конструкция печи ИЛК-16, имеющей цилиндри ческую ванну и щесть индукционных отъемных единиц Футеровка выполняется из шамотной набивной массы Теплоизоляцией служит диатомитовый кирпич. При плавке латуней и бронз температура разлива составляет 1100—1200° С. Большой перегрев металла свыше указанного значения может вызвать так называемую цинковую пульсацию, которая возникает при парообразовании цинка, входящего в состав расплава (цинк кипит при 916° С, тогда как температура плавления меди 1083° С). Цинковая пульсация выражается в кратковременном прекращении тока в каналах печи и затем его восстановлении, так как парообразование при исчезновении тока прекращается. Это приводит к характерному качанию стрелок измерительных приборов. [c.124]

    Хлористый цинк 2пС1г предстаЕ. ляет собой белое кристаллическое вещество плотностью 2900 кг/м , с температурой плавления 313° С, хорошо растворимое в воде. В 100 г воды при 20° С растворяется 368 г хлористого цинка, а при 100° С — 614 г. При растворении хлористого цинка в воде происходит разогревание раствора из-за химического взаимодействия вещества с растворителем. Растворы хлористого цинка имеют кислую реакцию, pH растворов обычно бывают от 1,5 до 3,5. Из-за гигроскопичности хлористого цинка в нем всегда имеется некоторое количество воды. Это вещество вследствие хорошей растворимости может полностью растворяться в гигроскопичной воде и образовывать вязкие густые растворы с большой плотностью. Обычно состав раствора хлористого цинка приходится корректировать после определения плотности раствора с помощью ареометра. Е5 табл. 15 приведена плотность растворов хлористого цинка, имеющих разную концентрацию. [c.66]

    Избыток амина берется для связывания выделяющегося хлористого водорода. Реакцию ведут при определенной температуре до полного поглощения фосгена и присоединения радикала O I к одному эквиваленту амина, после чего добавляют плавленый хлористый цинк и повышают температуру для проведения дальнейшей конденсации. Реакционную смесь выливают в воду и добавляют достаточное количество соляной кислоты, чтобы избыточный диметиланилин остался в растворе. Кетон Михлера, обладающий менее основными свойствами, при этом не растворяется и его отделяют фильтрованием. [c.388]

    Взаимодействие графита с большинством металлов и некоторыми металлоидами при соответствующих температурах приводит к образованию карбидов. Не образуют карбидов цинк, кадмий, ртуть, галлий, индий, таллий, олово, свинец и висмут. Медь, серебро и золото образукзт нестойкие карбиды, разлагающиеся со взрывом. Большинство конструкционных материалов на основе металлов взаимодействует с графитом, образуя карбиДы стехнометрического состава, или науглероживаются с образованием нестабильных карбидов, распадающихся при температурах ниже температуры образования карбида. Образование карбидов, как правило, сопровождается увеличением прочности и твердости материалов. Многие металлы начинают взаимодействовать с углеродом значительно ниже температуры их плавления. [c.127]

    Высаживаемый из флюса Прима III 2п, 5п, РЬ и Си при нагреве выше температуры плавления их эвтектики (ниже 183° С) вступают в контактно-реактивное плавление образующийся при этом слой эвтектики (кайма) активизирует смачивание и растекание припоя, снижает температуру его плавления и смачивания. При пайке с флюсом Прима II заметное высаживание твердого цинка на меди наступает после расплавления припоев олова и П0С61, что сначала приводит к изменению на границе капли припоя соотношения поверхностных натяжений сгси, припой и Стси, флюс на оси, припой и сг2п, флюс и увеличение контактного угла смачивания. Высаживаемый из флюса цинк не взаимодействует со свинцом и поэтому не оказывает влияния на его смачивание и растекание. Максимальная скорость изменения краевого угла смачивания при неизотермическом процессе характеризует способности припоя к растеканию она наибольшая у П0С61 и наименьшая у свинца, соответственно, как и площади растекания. [c.84]

    В некоторых случаях реакция протекает и без катализаторов. Обычно в качестве катализаторов применяются хлористый цинк, серная кислота -или уксусная кислота. При применении плавленого хлористого цинка с небольшим количеством Хлористого алюминия выход п-бромтолуола увеличипается почти в три раза [18]. [c.87]


Смотреть страницы где упоминается термин Цинк плавленый: [c.140]    [c.118]    [c.327]    [c.21]    [c.43]    [c.76]   
Синтез органических препаратов Сб.4 (1953) -- [ c.528 ]




ПОИСК







© 2025 chem21.info Реклама на сайте