Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий плотность

    Пропитку основ для положительных пластин производят в рас творе нитрата никеля при 80° С. При этой температуре содержа ние N (N63)2 должно быть порядка 5,4 моль л. Основы для отри цательных пластин предварительно подвергают травлению в рас творе азотной кислоты плотностью 1,06 см в течение 5—7 сек подсушивают при обдувке воздухом 30 мин и пропитывают при 45—50° С в растворе хлорида кадмия плотностью 1,57—1,60 г/сл с небольшой добавкой нитрата кадмия. Пропитка продолжается около 2 ч, затем основы подсушивают на воздухе и погружают ня [c.535]


    Раствор хлористого кадмия может быть приготовлен путем растворения в дистиллированной воде хлористого кадмия. Плотность такого раствора 1,57—1,60 при 15°С. [c.371]

    Пропитку основ для положительных пластин производят в растворе нитрата никеля при 80 °С. При этой температуре содержание N (N03)2 должно быть - 5,4 моль/л. Основы для отрицательных пластин предварительно подвергают травлению в растворе азотной кислоты (плотностью 1,06 г/см ) в течение 5—7 с, подсушивают при обдувке воздухом 30 мин и пропитывают при 45—50°С в растворе хлорида кадмия (плотностью 1,57—1,60 г/см ), содержащего 100 г/л нитрата кадмия. Пропитка продолжается около 2 ч, затем основы подсушивают на воздухе, и погружают на 2 ч в горячий раствор КОН (плотностью 1,19—1,21 г/см ), промывают до полного удаления щелочи и сушат при 70— [c.507]

    Пористую основу положительного электрода заполняют гидратом закиси никеля, а отрицательного — гидроокисью кадмия. Для этого пластины сначала пропитывают горячими концентрированными растворами азотнокислого никеля и хлористого кадмия, а затем после кристаллизации соли обрабатывают раствором щелочи и тщательно промывают очищенной водой. Промытые пластины высушивают при 100 °С и повторяют операцию пропитки еще 2—3 раза. Для ускорения процесса после пропитки основы в растворе Ni(N0a)2 рекомендуется в течение 10—20 мин проводить катодную поляризацию электродов в 25%-ном растворе едкого кали при плотности тока 8—10 А/дм . [c.99]

    Электролизеры для получения кадмия обычно выполняются аналогично другим электролизерам без диафрагм. В некоторых случаях для интенсификации процесса применяют электролизеры с медленно вращающимися дисковыми электродами, с которых снимают кадмий, не останавливая их. В таких электролизерах лучшие условия диффузии ионов кадмия к электроду позволяют повышать плотность катодного тока до 250—300 А/м и напряжение достигает 4 В. В настоящее время кадмий получают также методом амальгамной металлургии (в Италии) в объеме 18 т/год. [c.279]

    В аммиакатных электролитах цинк и кадмий присутствуют в виде аммиачного комплексного катиона Ме(МНз) . Восстановление этих ионов протекает при более отрицательном потенциале, чем восстановление простых гидратированных ионов, однако при повышении плотности тока катодный потенциал изменяется не так резко (рис. ХП-2 и рис. ХП-З, кривые <3), как в цианистых и пирофосфатных электролитах. [c.380]


    Температура цианистых электролитов кадмирования колеблется в пределах 20—35 °С. Плотность тока на катоде — от 0,5 до 3,0 А/дм . Катодный выход по току при плотности тока до 3—4 А/дм2 составляет около 90%. Аноды выполняют из чистого электролитического кадмия, содержащего не менее 99,9% d. Анодная плотность тока не должна превышать 2 А/дм . [c.387]

    Основное применение магния обусловлено его легкостью (плотность 1,738 г/см ) он в 1,5 раза легче алюминия, в 2,6 раза легче титана, в 2,4 раза легче стали. Сверхлегкие сплавы состоят главным образом из магния, легированного алюминием, цинком, марганцем, титаном, кадмием, цирконием, барием и др. Легирование магния улучшает его механические и другие свойства. При [c.505]

    При катодном выделении серебра, кадмия, цинка, меди величина плотности тока изменялась с температурой в соответствии с данными табл. V.l. Все измерения i проведены при постоянном значении перенапряжения т] = 0,15 В. Допуская отсутствие торможений химической стадии и стадии кристаллизации, установить для каждого металла природу замедленной стадии, н зависимости от чего вычис- [c.152]

    Кадмий для наполнения редуктора удобно получать электролизом концентрированного (20—30%-ного) раствора сернокислого кадмия ири силе тока 3—6 а. В качестве анода берут платину или, лучше, пластинку металлического кадмия в качестве катода можно брать платину, железо и т. д. При достаточной плотности тока металлический кадмий получается в виде мягких волокон, очень удобных для работы. Таким же образом можно получить металлический цинк, но волокна цинка получаются более грубыми. [c.396]

    Скорость разряда ионов кадмия значительна,, поэтому при относительно незначительной поляризации наблюдается высокая плотность тока на катоде. Поляризационные кривые очень похожи на кривые разряда ионоа цинка (рис. 229). [c.494]

    Приборы и реактивы. Тигель фарфоровым. Асбестированная сетка. Сульфат циика. Сульфат кадмий. Цинк (пыль и гранулированный). Сера (гарный цвет). Лакмусовая бумажка (красная). Лакмус (нейтральный раствор). Растворы серной кислоты (2 н. плотность 1,84 г/см ) хлороводородной кислоты (2 н. и 1 и.) едкого натра (2 н.) едкого кали (концентрированный) аммиака (2 н.) сульфата кадмия (2 н.) сульфата цинка (2 н.) нитрата калия (0,5 н,) карбоната натрия (0,4 н.) сульфида аммония (насыщенный). [c.192]

    В свободном состоянии висмут представляет собой блестящий розовато-белый хрупкий металл плотностью 9,8 г/см . Его применяют как в чистом виде, так и в сплавах. Чистый висмут используют главным образом в энергетических ядерных реакторах в качестве теплоносителя. С некоторыми металлами висмут образует легкоплавкие сплавы например, сплав висмута со свинцом, оловом и кадмием плавится при 70 °С. Эти сплавы применяют, в частности, в автоматических огнетушителях, действие которых основано на расплавлении пробки, изготовленной из такого сплава. Кроме того, они используются как припои. [c.450]

    Г де 5 — контактирующая с раствором площадь электрода дг д 1п з)ф — изменение плотности заряда при деформации поверхности в условиях постоянного потенциала. Для таких электро- — 45 5 дов, как свинец, висмут, таллий и кадмий, эта производная, по-видимому, дает очень небольшой вклад в регистрируемую величину ду д( . [c.55]

    Большая наглядность достигается при использовании таких пар веществ, как нитрат серебра и медь, сульфат меди и кадмий, так как ионы металлов этих пар значительно различаются как по эквиваленту, так и по цвету. В первом варианте возникает цветной поток нитрата меди, направленный вверх, а во втором — бесцветный поток сульфата кадмия, направленный вниз. Через несколько минут растворы в пробирках разделяются по плотности и цвету с хорошо видимой границей, если вместо проволочек применять гранулы или кусочки металлов, подвешенные на нитке. Опыты иллюстрируют реакционную способность металлов и атомно-молекулярную теорию. [c.159]

    Кадмий выделяется в виде мелкокристаллического порошка при токе 0,1—0,3 А па 1 с.м катода. При боль-п]ей плотности тока металл получается в виде губки. При низкой концентрации сульфата также получается губка. В этом случае к электролиту добавляют твердый сульфат кадмия. [c.160]

    Концентрацию ионов кадмия вычислим по формуле (13), рассчитав предварительно предельную диффузионную плотность тока из уравнения (10)  [c.80]

    Цинк и кадмий — серебристо-белые металлы. Плотность цинка — 7 133 кг/мЗ, температура плавления 419,5 °С. У кадмия плотность равна 8 650 кг/м , а температура плавления 321,1 °С. Во влажном воздухе и воде цинк и кадмий пассивируются, покрываясь пленками гидрооксикарбоната цинка или оксида кадмия соответственно. Оба металла реагируют с минеральными кислотами и влажными галогенами, солями аммония. Цинк растворяется в концентрированных растворах щелочей. [c.263]


    Температурные поправки для ртути могут быть определены по графикам рис. 464 и 465. Если рабочей жидкостью служит вода или спирт, то отсчет показаний производится по нижней точке мениска, а если ртуть, то отсчет производится по верхней точке. Целесообразно также использовать в качестве рабочей жидкости борвольфрамокислый кадмий (плотность 3,28 г/см ), поглощающий мало газов. При необходимости более точных измерений нужно также учитывать и коэффициент линейного расширения шкалы. При измерении ртутным манометром следует учитывать влияние капиллярных сил и выбирать диаметр трубки не менее 8—10 мм. При этом наименьшая разность уровней, которая еще может быть измерена достаточно точно, составляет —10 мм рт. ст. [c.517]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]

    Изучение кинетики электроосаждения металлов связано также с затруднениями, возникающими в связи с неустойчивостью во времени потенциала катода. Изменение потенциала и электродной поляризации вызывается не только изменением активной иоверхности и истинной плотности тока, по и другими причинами. Особенно заметно изменение потенциала со временем при выделении металлов на чужеродных электродах, когда электролиз приводит к образованию новой металлической фазы, наиример ири осажденпи кадмия, меди, серебра, ртути и ряда других металлов на платиновом катоде. Впервые это явление было обнаружено еще в 1910 г. Лебланом, Изменение величины нерена-иряжения со временем наблюдается при выделении металла и на одноименном катоде. На рис. 22.3 яриведена типичная кривая поляризация — время, полученная при выделении серебра на серебряном катоде. [c.455]

    Все металлы, приведенные в табл. 22.1, можно разделить на три группы. К первой из них относятся металлы, выделяющиеся из водных растворов или совсем без перенапряжения (ртуть), или с очень малым перенапряжением, не превышающим при обычных плотностях тока тысячных долей вол1>та (серебро, таллий, свинец кадмий, олово). Для этой группы металлов (кроме ртути) наибо лее отчетливо проявляются неустойчивость потенциала во времени сложный характер роста катодного осадка и другие особенности свойственные процессу катодного выделения металлов. При про мышленных плотностях тока эти металлы дают грубые осадки Токи обмена для металлов этой группы очень велики. Так, напри мер, ток обмена между металлическо) ртутью и раствором ее ниг рата превышает 10 А-м а между серебром и раствором нитрата серебра достигает 10 А-м  [c.459]

    Аналогичная картина должна наблюдаться и нри замедленном протекании других стадий. В связи с этим при не слишком больших удалениях от состояния рав-нозесия обнаруживается некоторая симметрия в протекании процессов катодного выделения металлов и их анодного растворения. Так, например, анодная по-ляризация ртути, серебра, таллия и кадмия оказывается близкой по величине к катодной поляризации этих же металлов при одинаковых катодной и анодной плотностях тока, т. е. при равной скорости осаждения и растворения. Изменение анодного и катодного перенапряжения с ростом плотности тока точно так же подчиняется для этих металлов примерно одному и тому же закону. [c.476]

    Все обычные ХИЭЭ не свободны от двух недостатков. Во-первых, стоимость веществ, необходимых для их работы (иапример, свинца, кадмия), высока. Во-вторых, отношение количества энер-гни, которую может отдать элемент, к его массе мало. На протяжении последних десятилетий ведутся исследования, направленные на создание элементов, при работе которых расходовались бы дешевые вещества с малой плотностью, подобные жидкому или газообразному топливу (природный газ, керосин, водород и др.). Такие гальванические элементы называются топливными. Проблеме топливного элемента уделяется в настоящее время большое внимание и можно полагать, что в ближайшем будущем топливные элементы найдут широкое применение. [c.279]

    Преимуществами бань с легкоплавкими сплавами, например сплавом висмута, свинца, кадмия и олова с температурой плавления около 70°С (сплавом Вуда), является высокая теплопроводность, негорючесть, чистота в работе, возможность достижения высоких температур. С металлическими банями необходимо работать в очках и холщовых рукавицах. Для предотвращения окисления жидких сплавов при температурах выше 300 °С на поверхность металла иногда насыпают слой слегка измельченного угля. При застывании сплава находящиеся з бане колбы и термометры могут быть раздавлены, поэтому их следует вынимать сразу по окончании работы. Чтобы металл не налипал на стенки колбы, последнюю полезно перед началом работы закоптить в пламени горелки. Вследствие высокой плотности сплавов металлические бани объемом более 1 л неудобны в работе, что несколько ограничивает их применение. [c.90]

    По физическим свойствам цинк, кадмий и ртуть резко отличаются от щелочноземельных металлов. Плотности н атомные объемы возрастают от цинка к ртути, а температуры плавления и кипения в том же направлении снижаются. Теплоты сублимации цинка, кадмия и ртутн в 1,3—2,7 раза меньше, чем у кальция, стронция и бария этим объясняется большая летучесть цинка, кадмия и ртути. [c.330]

    В свинцово-кадмиевых элементах, предназначенных для работы при высоких плотностях тока и низких температурах, оба электрода — намазные. Паста для отрицательного электрода состоит из замешанной на воде окиси кадмия, которая при иосстаноплении переходит в губчатый кадмий. В элементах, работающих при комнатных температурах или при малых нагрузках, отрицательные электроды могут быть изготовлены из перфорированных листов металлического кадмия. [c.880]

    В нас. р-р dSOi (750 г/л) помещают палочку металлического d (анод) и Pt-проволоку или пластинку (катод), добавл. несколько капель H2SO4 (конц.). Электролиз проводят при перемеш., катодной плотности тока 0,01 а/см и при напряжении 3—4 в. Выделенный кадмий промывают. Сохраняют под водой [c.28]

    На рис. VIII-7 приведена анодная кривая поляризации для полиметаллической амальгамы. Кривая показывает, что анодный процесс зависит от плотности тока на аноде. Если она меньше или близка d,, то с анода растворяется только наиболее отрицательный металл (в нашем примере — цинк). Если она близка то одновременно растворяются два металла — цинк и кадмий. При высокой плотности тока (больше S i-di примесей) может растворяться и более положительный, рафинируемый, металл, а иногда и сама ртуть, и более положительные металлы. [c.252]

    Степень допускаемого обеднения электролита по ионам кадмия и обогащения его по серной кислоте зависйт от содержания в растворе ионов цинка, меди и других примесей. При слишком сильном обеднении электролита по ионам кадмия и высоком содержании цинка (до 80 г/л) потенциа разряда ионов кадмия приближается к потенциалу разряда ионов цинка и на катоде начинает выделяться цинк. При нормальных условиях выход кадмия по току высок и достигает 85—90% несмотря на низкие плотности тока (40—100 А/м ). Это связано с высоким перенапряжением водорода на кадмии. Благодаря применению нерастворимых анодов из сплава свинца с 1% серебра напряжение на кадмиевых ваннах достигает 2—2,5 В, а расход энергии 1200—1500 кВт-ч/т металла. [c.277]

    Превалирующими катодной и анодной реакциями при рафинировании серебра являются Ag е Ag+. Из-за малого перенапряжения при не слишком высоких плотностях тока эти реакции протекают при потенциалах, близких к равновесному. В соответствии с этим возможные примеси — золото, платиноиды, медь, сурьма, висмут, олово, селен, теллур, а также незначительные количества цинка, кадмия, никеля, железа — ведут себя в растворах рафинирования серебра в соответствии с их потенциалами и химическими свойствами. В шламе концентрируются золото и платиноиды, сурьма, висмут и олово в виде гидроокисей и метаоловян-ной кислоты, сера, селен и теллур в виде сульфидов, селенидов и теллуридов металлов. В растворе накапливается медь, которой в рафинируемом металле может быть довольно много (в сплаве д оре до 2—3%), а также все более электроотрицательные металлы. Контролирующей примесью является медь, допустимое содержание которой 30—40 г/л. При превышении этого количества часть электролита отбирают и заменяют свежим серебро из отработанного раствора извлекают методом цементации медьЕо. [c.316]

    Температура электролитов — от 18 до 30 °С. Плотность тока на катоде — в пределах 0,5—1,5 А/дм . Аноды вьшолнены из чистого электролитического кадмия анодная плотность тока примерно равна катодной или несколько ниже ее. [c.387]

    Для защиты аппаратуры, предназначенной для работы В море, ее поверхность покрывают слоем кадмия толщиной до 30 мкм. Определите время, за которое будет нанесено такое покрытие поверхности изделия площадью 0,5 м при плотности тока 1,5 А/дм2 и выходе по току 0,98, если процесс ведется из < ернокислотного раствора dSO . Плотность кадмия принять равной 8650 кг/м . [c.195]

    Осаждение кадмия из столь кислых растворо1в оказывается возможным даже при низких плотностях тока благодаря высокому перенапряжению выделения водорода на кадмие и его малой скорости растворения в кислоте. [c.498]

    На рис. 230 приведены данные о влиянии концентрации ионов кадмия и серной кислоты на потенциалы выделения кадмия при различных плотностях тока (кривые 1, 2, 3 и 4). На том же рисунке, на кривой 5, приведены данные о зависимости перенапряжения выделения водорода на кадмие от плотности тока. Из рисунка видно, что понижение концентрации ионов кадмия и повышение концентрации серной кислоты в электролите приводит к некоторому увеличению катодной поляризации. [c.498]

    В практике электролитическое осаждение кадмия ведут либо при низких плотностях тока (30—50 а/м ), если катоды неподвижны, либо при более высоких плотностях тока 300—400 а/м , если применяют вращающиеся дисковые катоды. Повышению плотности тока препятствует осаждение кадмия в виде рыхлого осадка. Так же, как и при электролизе цинка, применяют алюминиевые катоды и овинцово-серебряные аноды. [c.500]

    Анодами сяужили пластины из чернового индия, содержащего до 1,5% олова, небольшие количества железа, цинка, кадмия, катодами —алюминиевые пластины. Электролиз вели при комнатной температуре без перемешивания при катодной плотности тока 300 а/м , анодной 150 а/м . Напряжение на ванне было равно 1,5 в. Уксусную кислоту применяли для связывания железа. Во избежание загрязнения катодного осадка на аноды надевали мешочки из хлопчатобумажной ткани. Выход по току достигал 95%. Осадок индия снимали с катода через каждые 6 час. и подвергали анализу на олово. Первые осадки индия содержали. 0,2—0,3% 5п, остальные до 0,6%- [c.559]

    Все обычные ХИТ не свободны от двух недостатков. Во-первых, стоимость веществ, необходимых для их работы (например, свинца, кадмия), высока. Во-вторых, отношение количества энергии, которую может отдать элемент, к его массе ма по Важно иметь э.пементы, при работе которых расходовались бы де-Ш1. В1)1е веш,сстна с малой плотностью, подобные жидкому или газообраз1юму топливу (природный газ, керосин, водород и др.) Такие гальванические элементы называются топливными, (см. разд. 38.3). [c.273]

    Выполнение работы. 1. Приготовить три рабочих раствора I, И и 1П. Раствор I приготовить сливанием равных объемов 0,25 н. раствора dS04 и 0,5 н. H2SO4. Растворы И и III приготовить из раствора I, добавив в него желатин, агар-агар, трибензиламин (или любой другой амин) или высший спирт в таком количестве, чтобы концентрация в растворах поверхностно-активного вещества была разная и равнялась от 0,25 до 1 г/л. 2. Повторить при заданной температуре с растворами I, II и III работу 70. 3. Вычислить фк, фп.к и Афк для гальванических элементов с растворами I, II н ПТ (см. работу 70). Сравнить их друг с другом. 4. Провести электролитическое осаждение кадмия из растворов I, II и III в течение 13--20 мин и плотности тока 5 мА/см . Рассмотреть, используя бинокулярную лупу или металлографический микроскоп, осадки, полученные на катоде при электролизе растворов 1, И и III. Сравнить структуру осадков. 5. Четко записать выводы. Для отчета использовать таблицу по форме, помещенной в работе 69. [c.214]

    Гибридизация сопровождается образованием структур с высокосимметричным направленным распределением электронной плотности (рис. 5.5). Она отражает такое важное свойство ковалентной связи, как ее направленность. От направленности ковалентной связи зависит строение молекул. Комбинации в атоме двух электронов в - и р-состояниях приводят к образованию двух гибридных связей 2q) под углом 180° (галогениды бериллия, цинка, кадмия, ртути) например, для молекулы 2пС12  [c.101]

    Большое положительное значение перенапряжения можно показать на примере электрохимического выделения водорода. Электродные потенциалы цинка, кадмия, железа, никеля, хрома и многих других металлов в ряду напряжения имеют более отрицательную величину равновесного потенциала по сравнению с потенциалом водородного электрода. Благодаря перенапряжению водорода на указанных выше металлах при электролизе водных растворов их солей происходит перемещение водорода в ряду напряжений в область более отрицательных значений потенциала и - становится возможным выделение многих металлов на электродах совместно с водородом с большим выходом металла по току . Так, выход по току при электролизе раствора 2п504 более 95%. Это широко используется в гальванотехнике при нанесении гальванических покрытий и в электроанализе. Изменением плотности тока и материала катода можно регулировать перенапряжение водорода, а значит и восстановительный потенциал водорода и реализовать различные реакции электрохимического синтеза органических веществ (получение анилина и других продуктов восстановления из нитробензола, восстановление ацетона до спирта и др.). Перенапряжение водорода имеет большое значение для работы аккумуляторов. Рассмотрим это на примере работы свинцового аккумулятора. Электродами свинцового аккумулятора служат свинцовые пластины, покрытые с поверхности пастой. Главной составной частью пасты для положительных пластин является сурик, а для отрицательных — свинцовый порошок (смесь порошка окиси свинца и зерен металлического свинца, покрытых слоем окиси свинца). Электролитом служит 25—30% серная кислота. Суммарная реакция, идущая при зарядке и разрядке аккумуляторов, выражается уравнением [c.269]

    Пример 25. Электроосаждение кадмия из раствора, содержащего d la и 2 моль-л K I, ведут на дисковом катоде, вращающемся со скоростью 120 об/мин при 25° С. Перенапряжение на катоде при плотности тока 21,1-10 А/см равно —15 мВ. Рассчитать толщину диффузионного слоя на дисковом катоде и концентрацию кадмия в растворе, если коэффициент диффузии d + равен 0,72х Х10 5 см -с , а кинематическая вязкость раствора v 1,4-10" см Х Числом переноса ионов кадмия пренебречь. [c.80]


Смотреть страницы где упоминается термин Кадмий плотность: [c.572]    [c.374]    [c.500]    [c.100]    [c.50]    [c.50]   
Коррозия металлов Книга 1,2 (1952) -- [ c.1187 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Плотность хлоридов кадмия

Хлористый кадмий плотность растворов



© 2025 chem21.info Реклама на сайте