Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссионный спектральный анализ приборы

    Эмиссионный спектральный анализ Приборы и приемники [c.11]

    Характеристичность линейчатых спектров лежит в основе качественного эмиссионного спектрального анализа, а функциональная зависимость между концентрацией элемента в пробе и интенсивностью его спектральных линий положена в основу количественного анализа. Для их осуществления вещество пробы переводят в состояние плазмы, в котором элементы частично находятся в виде атомного пара , и ее излучение разлагается з спектральном приборе в спектр. Затем спектральные линни идентифицируют (качественный анализ) и измеряют их интенсивность (количественный анализ). [c.8]


    Общеизвестно большое значение эмиссионного спектрального анализа, особенно для определения малых количеств загрязнений и добавок в сплавах, примесей в минералах. От высокой температуры искры или электрической дуги возбуждается спектр испускания металлов — эмиссионный спектр. Излучение разлагается специальными приборами — спектрографами и фотографируется. Для наблюдения спектров в увеличенном виде применяют спектро-проекторы (рис. 1). [c.19]

    Монохроматоры как самостоятельные приборы применяются для аналитических целей в пламенной фотометрии. Но, как правило, они являются составной частью более сложных приборов, предназначенных для абсорбционного или эмиссионного спектрального анализа. [c.144]

    Фотографическая пластинка. Приборы с фотографической регистрацией излучений более удобно использовать в эмиссионном спектральном анализе. Хотя приборы такого типа могут быть использованы и для спектрофотометрического анализа. Для этого следует заменить дугу или искру каким-либо более стабильным источником излучения. Для получения зависимости поглощения от длины волны необходимо [c.239]

    Пламенная фотометрия — один из методов атомно-эмиссионного спектрального анализа. Этот метод состоит в том, что анализируемый образец переводят в раствор, который затем с помощью распылителя превращается в аэрозоль и подается в пламя горелки. Растворитель испаряется, а элементы, возбуждаясь, излучают спектр. Анализируемая спектральная линия выделяется с помощью прибора — монохроматора или светофильтра, а интенсивность ее свечения измеряется фотоэлементом. Пламя выгодно отличается от электрических источников света тем, что поступающие из баллона газ-топливо и газ-окислитель дают очень стабильное, равномерно горящее пламя. Из-за невысокой температуры в пламени возбуждаются элементы с низкими потенциалами возбуждения в первую очередь щелочные элементы, для определения которых практически нет экспрессных химических методов, а также щелочно-земельные и другие элементы. Всего этим методом определяют более 70 элементов. Использование индукционного высокочастотного разряда и дуговой плазменной горелки плазмотрона позволяет определять элементы с высоким потенциалом ионизации, а также элементы, образующие термостойкие оксиды, для возбуждения которых пламя малопригодно. [c.647]

Рис. 1. Прибор для обнаружения сурьмы методом атомно-эмиссионного спектрального анализа Рис. 1. Прибор для <a href="/info/173257">обнаружения сурьмы</a> <a href="/info/1492546">методом атомно-эмиссионного спектрального</a> анализа

    Различают два вида эмиссионного спектрального анализа — количественный и полуколичественный, которые отличаются степенью точности измерений. Более точные количественные определения выполняют с помощью приборов, называемых стилометрами. Для полу-количественных определений используют менее совершенные приборы [c.326]

    Приборы эмиссионного спектрального анализа, в которых полученный спектр регистрируется на фотопластинке, называют спектрографами. Для разложения излученного света используют призмы или дифракционные решетки. У некоторых наиболее про-сты) спектральных приборов, называемых стилоскопами, эмиссионный спектр можно зрительно наблюдать во время его возбуждения, а длину волны отдельных линий приблизительно определять по шкале в самом аппарате. Принципиальная схема призменного-спектрографа показана на рис. УП1.4. [c.191]

    Спектральный диапазон прибора. Область спектра, регистрируемая призменным прибором, ограничена главным образом прозрачностью материала призм (материал других прозрачных деталей подбирают в соответствии с материалом призмы), а также особенностями конструкции прибора. Обычно в приборах для эмиссионного спектрального анализа установлены призмы и линзы из кварца или из некоторых сортов оптического стекла. Имеются оптические стекла прозрачные для длин [c.199]

    Работы, изложенные в настоящей главе, связаны с применением спектральных приборов для целей эмиссионного спектрального анализа. Для правильного их выполнения необходимо понимание основ метода качественного и количественного эмиссионного анализа, которые кратко излагаются ниже. [c.238]

    Прибор предназначается для эмиссионного спектрального анализа, комбинационного анализа, анализа по спектрам поглощения и для других спектроскопических исследований. Оптическая схема прибора представлена на рис. 8. [c.283]

    Разработка спектральной аппаратуры для промышленного анализа шла сначала по пути обеспечения машиностроительной и металлургической промышленности приборами для эмиссионного спектрального анализа, а затем и по пути обеспечения химической и близких к ней отраслей промышленности приборами для абсорбционного анализа по электронно-колебательным и чисто колебательным спектрам. [c.9]

    Зависимость чувствительности эмиссионного спектрального анализа от оптических характеристик спектрального прибора [c.25]

    В Советском Союзе налажен выпуск приборов для эмиссионного спектрального анализа. Первый отечественный прибор ИСП-4 был создан в 1935 г. Массовый выпуск приборов, главным образом для удовлетворения нужд заводских лабораторий, был налажен сразу после Отечественной войны позднее появились и приборы для научных исследований, отличающиеся лучшими характеристиками. Очень большую роль в этом деле сыграл Государственный оптический институт в Ленинграде. Первый квантометр ДФС-10 был разработан и изготовлен в 1956 г. В семидесятые годы основными приборами для эмиссионного спектрального анализа стали кварцевый спектрограф ИСП-30, диффракционный спектрограф ДОС-13, позволяющий определять элементы со сложным спектром, квантометры ДФС-40 и ДФС-39. Выпускаются и другие приборы, отличающиеся хорошей оптической частью. Совершенствуются приемники света для приборов с фотоэлектрической регистрацией, фотоумножители и др. Тираж приборов, к сожалению, недостаточен. Квантометры не всегда снабжаются полноценной электронно-вычислительной машиной. [c.69]

    В области оптических методов анализа имеется большой опыт создания спектрографов, микрофотометров и других приборов для эмиссионного спектрального анализа, включая квантометры, инфракрасных спектрофотометров, спектрофотометров для видимой и ультрафиолетовой части спектра, в том числе регистрирующих (СФ-8 и др.). Давно выпускаются газоанализаторы, особенно для контроля содержания метана в шахтах, но также и для других целей. Налаживается широкое производство хороших приборов для рентгенофлуоресцентного анализа и рентгеновского микроанализа. Есть вполне современные приборы для электрохимических методов анализа. [c.163]

    В эмиссионном спектральном анализе обычно регистрируется спектр интегрального излучения столба дуги, вертикальное изображение которого проектируется либо на щель, либо на колли-маторный объектив спектрографа. В первом случае в прибор попадает излучение спектральной линии от узкой вертикальной полосы столба, вырезанной по его осевому сеч ию, т. е. интегрированное по диаметру. Это излучение с точностью до некоторого постоянного множителя описывается интегралом вида  [c.100]

    В отличие от ряда других аналитических методов в эмиссионном спектральном анализе связь между интенсивностью линий и концентрацией элемента в образце можно найти только опытным путем. Не существует никаких методов, позволяющих теоретически рассчитать эту зависимость. Ее приходится устанавливать заново каждый раз, в каждой лаборатории, для каждого прибора. Только в отдельных случаях приближенные количественные оценки можно делать на основании данных, полученных,в других лабораториях, по разработанной там методике и по найденной там зависимости между концентрацией вещества и интенсивностью линий в спектре. [c.287]


    С методической точки зрения атомно-абсорбционный анализ также оказывается более гибким и простым, чем эмиссионный. Известно, что для проведения эмиссионного спектрального анализа новой категории веществ необходим весьма кропотливый выбор оптимальных условий измерения, гарантирующих требуемую чувствительность, точность, правильность и экономичность анализов. Сюда относятся выбор свободных от наложений и достаточно чувствительных аналитических линий, внутреннего стандарта и подходящих линий сравнения, выбор условий возбуждения и регистрации спектров (источников и режима возбуждения, способов введения проб в аналитический промежуток, времени предварительного обыскривания и экспозиции, спектральных приборов, ширины щели и пр.). Нередко эта процедура разрастается в продолжительное и трудоемкое поисковое исследование. [c.376]

Рис. 1. Схема эмиссионного спектрального анализа вещества 1 — Источник света (проба) 2, 4, 6 — линзы 3 — входная щель спектрального прибора 5 — призма 7 — фокальная плоскость (регистрация спектра) 8 — визуальное наблюдение видимой области спектра при помощи окуляра 9 — фотографический метод регистрации спектра 10 — фотоэлектрический метод регистрации спектра (а — фотоумножитель, б — усилитель, в — самописец) Рис. 1. Схема <a href="/info/5115">эмиссионного спектрального анализа</a> вещества 1 — <a href="/info/128501">Источник света</a> (проба) 2, 4, 6 — линзы 3 — входная <a href="/info/1492507">щель спектрального прибора</a> 5 — призма 7 — <a href="/info/215492">фокальная плоскость</a> (<a href="/info/117523">регистрация спектра</a>) 8 — <a href="/info/390705">визуальное наблюдение</a> <a href="/info/382081">видимой области спектра</a> при помощи окуляра 9 — фотографический <a href="/info/117523">метод регистрации спектра</a> 10 — фотоэлектрический <a href="/info/117523">метод регистрации спектра</a> (а — фотоумножитель, б — усилитель, в — самописец)
    ПРИБОРЫ ДЛЯ ЭМИССИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА [1—10] [c.53]

    Приборы для эмиссионного спектрального анализа [c.80]

    Эмиссионный спектральный анализ основан на регистрации и анализе спектра, излучаемого пробой вещества, нагретой до высокой температуры (5000—12000°С) в дуговом или искровом генераторе. Атомы каждого элемента испускают волны определенной длины (см. табл. 10.14). По сумме этих волн и их интенсивности определяют, какие элементы и в каком соотношении присутствуют в пробе. Используют для анализа металлов и металлических сплавов. Прибор для анализа — спектрограф. [c.216]

    Разновидность эмиссионного спектрального анализа — фотометрия пламени. По этому методу анализируемую пробу нагревают до 1200—3000°С в пламени специальной газовой горелки (см. табл. 10.15). Применяют для определения натрия, калия, лития, кальция, бора, хрома, марганца. Прибор для анализа — пламенный фотометр. [c.216]

    Спектрографы —эго приборы, разлагающие излучение по длинам волн и фотографирующие получившийся спектр. Для измерения эмиссии применяют также спектрометры, приборы с фотоэлектрической регистрацией сигнала но фотографирование более распространено. Следует отличать спектрографы и спектрометры от спектрофотометров, описанных в гл. 23. Спектрографы или эмиссионные спектрометры регистрируют интенсивность всех или некоторых линий одновременно во всех областях спектра, в то время как для получения информации при работе на спектрофотометре необходима развертка по длинам волн. Спектрографы особенно удобны для эмиссионного спектрального анализа, поскольку они позволяют обнаруживать и определять несколько элементов из одной небольшой навески. [c.187]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    В таких методах анализа, как прлярография, эмиссионный спектральный анализ и др., И.а. в конечной стадии определяется разрешающей способностью прибора, т.е. той миним. разностью между абсциссами сигналов искомого и сопутствующего компонентов на регистриреумой кривой (регистрограмме), при к-рой еще можно надежно обнаружить или измерить сигнал искомого компонента. Разрешающая способность прибора зависит от ширины сигнала. Наиб, высокой И. а. характеризуются методы многокомпонентного анализа - масс-спектрометрия, иейтроино-активац. анализ, газожидкостная хроматография и др. [c.178]

    Эмиссионный спектральный анализ в настоящее время является одним из наиболее широко используемых методов определения малых содержаний Sb в металлах и их сплавах, горных породах, рудах, веществах высокой чистоты, полупроводниковых и многих других материалах I227, 287, 314, 369, 380, 398, 442, 635, 637, 681—683, 807]. Теоретические основы эмиссионного спект-зального анализа изложены в ряде руководств и монографий 209, 226, 349, 709, 936]. Основными преимуществами эмиссионного спектрального анализа являются универсальность, высокая чувствительность и вполне удовлетворительная точность. Большая производительность и экономичность делают его незаменимым при массовых анализах однотипных проб, особенно с использованием современных приборов с фотоэлектрической регистрацией спектров [501, 710]. К числу достоинств спектрального метода следует также отнести в большинстве случаев малое количество вещества, необходимое для проведения анализа, составляющее иногда сотые доли грамма. [c.77]

    Определение примесей химических элементов в радиофар-мацевтических препаратах осуществляют методом эмиссионного спектрального анализа по спектрам испускания. Анализ предполагает сжигание пробы испытуемого вещества в газовом пламени, электрической дуге или электрической высоковольтной искре. При этом происходят испарение исследуемого вещества и его диссоциация на атомы и ионы, которые возбуждаются и испускают свет. Излучение источника света складывается из излучения возбужденных атомов всех элементов, присутствующих в пробе. Атомы каждого элемента испускают кванты света только определенных длин волн (так называемое характеристическое излучение), выделяемых посредством спектральных приборов, в которых происходит разложение света, испускаемого источником, в линейчатый спектр. [c.322]

    Первые применения эмиссионного спектрального анализа относят к 1859 г., когда Кирхгоф и Бунзен опубликовали совместную работу по обнаружению щелочных металлов с помощью спектроскопа. В чисто производственных целях спектроскоп начал использоваться в 1923 г. в Англии для сортировки металлического лома, в связи с чем прибор и был назван стило-скопом (от англ. steel — сталь). Хотя теперь визуальными спектральными приборами анализируются не только стали, за ними прочно сохраняются привившиеся названия — стилоскоп и стилометр. Легкость и быстрота проведения наблюдений в видимой области спектра с помощью глаза обусловливают широкое распространение этого вида спектрального анализа и в настоящее время, несмотря на высокий уровень развития других, главным образом фотоэлектронных методов измерений световых излучений. [c.409]

    Первый отечественный спектрограф для ультрафиолетовой и видимой области спектра был разработан в Государственном оптическом институте (ГОИ) в Ленинграде под руководством акад. Д. 6. Рождественского и выпущен в 1936 г. Эмиссионный спектральный анализ (анализ по спектрам излучения) начал применяться в промышленности и геологии. После Великой Отечественной войны серийное изготовление спектрографов было налажено И. А. Шо-шиным на Государственном оптико-механическом заводе имени ОГПУ в Ленинграде. В 1945 г. был выпущен спектрограф ИСП-22 с комплектом вспомогательной аппаратуры, а затем разработаны и другие типы спектральных приборов большим стимулом к их разработке и выпуску послужило данное ГОМЗу в 1951 г. правительственное задание — оснастить МГУ новейшими приборами. [c.9]

    Спектральные приборы есть на любом металлургическом заводе, в геологических организациях, научных учреждениях. Эмиссионный спектральный анализ дал первые сведения о составе Солнца и других небесных тел. В нашей стране спектральный анализ нашел массовое применение, начиная с 30-х годов этому во многом способствовали работы академиков Г. С. Ландсберга и Л. И. Мандельштама. Можно назвать несколько наиболее известных достижений наших специалистов по спектральному анализу. Н. С. Свентицкпй предложил активированную дугу переменного тока в качестве источника возбуждения, а С. М. Райский — схему искрового генератора для спектрального анализа. Для расчета оптических приборов, конструирования и организации их выпуска многое сделал В. К. Прокофьев. А. Н. Зайдель и другие ввели в спектральный анализ метод фракционного испарения, использованный для определения примесей в уране и плутонии. Предложенный [c.67]

    В главе кратко описаны наиболее распространенные типы спектральных приборов, вспомогательная аппаратура, прйменяе-мая для проведения эмиссионного спектрального анализа, и приведены краткие сведения, касающиеся основных характеристик спектральных приборов. Подробнее с теорией спектральных приборов можно ознакомиться в работах [1, 4—6]. [c.53]

    Точнее эти приборы можно определить следующим образом приборы для эмиссионного спектрального анализа с прямым измерением интенсивности и регистрацией интенсивности или отношения интенсивностей путем прямого отсчета показаний прибора или шкалы . В литературе на английском языке преобладает термин прямой отсчет . Термин Spe trole teur , используемый для приборов фирмы Камека , также предполагает прямой отсчет. [c.198]


Смотреть страницы где упоминается термин Эмиссионный спектральный анализ приборы: [c.709]    [c.709]    [c.171]    [c.25]    [c.99]    [c.381]    [c.30]    [c.112]    [c.6]    [c.151]   
Основы аналитической химии Кн 3 Издание 2 (1977) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ приборы

Анализ эмиссионный

Анализ эмиссионный спектральный

Спектральные приборы

Спектральный анализ

Спектральный эмиссионный

гом эмиссионный



© 2025 chem21.info Реклама на сайте