Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистоны молекулярный вес

    Рибонуклеопротеиды. — В состав нуклеопротеидов в качестве белковой компоненты входят основные белки— гистоны и протамины эти белки богаты аргинином и (или) лизином, содержат лишь ограниченное количество нейтральных аминокислот, но не содержат серусодержащих аминокислот и имеют относительно низкий молекулярный вес. [c.733]

    Г-н. стала основой развития молекулярной генетики. Благодаря возможности клонирования чужеродных генов в бактериях, животных и растит, клетках (выделеньг клоны мн. генов рибосомной РНК, гистонов, интерферона и гормонов человека и животных и т. п.), Г. и. имеет прикладное значение. Она составляет, наряду с клеточной инженерией, основу совр. биотехнологии. С помощью методов Г. и. получены мн. иовые, иногда неожиданные данные, открыто, напр., мозаичное строение генов у высших организмов, изучены транспозоны бактерий и мобильные диспергированные элементы высших организмов, открыты онкогены и т.п. (см. Мигрирующие генетические элементы). [c.518]


    В состав нуклеопротеидов входят простые белки (гистоны и протамины) и нуклеиновые кислоты. Нуклеиновые кислоты — высокомолекулярные соединения, имеющие очень большой молекулярный вес (от сотен тысяч до нескольких миллионов). Они принимают участие в процессах биосинтеза белка. При гидролизе нуклеиновые вещества расщепляются на фосфорную кислоту, углеводы и органические азотсодержащие основания. [c.214]

    Глобины гемоглобинов крови разных животных различны по составу и расположению в их молекулах аминокислот. Различаются они также серологически (стр. 37). Так, например, глобин человека не включает аминокислоты изолейцина, в то время как в глобине собаки его содержание составляет 1,36%. В глобине собаки и коровы содержатся различные количества метионина и т. д. Что же касается гема, то по своей химической структуре он один и тот же у различных позвоночных животных. Отсюда ясно, что видовая специфичность гемоглобинов обусловлена их белковыми компонентами. Глобины по содержанию в них диаминомонокарбоновых кислот относятся к гистонам. Молекулярный вес гемоглобина равен 67— 70 тысячам и в его молекуле содержатся четыре молекулы гема. Молекула гема включает один атом железа. [c.43]

    Гистоны представляют собой небольшие белки молекулярной массой от 12 ООО до 20 ООО Да, содержапще до 25% лизина и аргинина. В отличие от ДНК, гистоны не видоспецифичны, т.е. у разных видов они сходны. [c.43]

    Протамины — положительно заряженные ядерные белки с молекулярной массой 10—12 kDa. Так же как и гистоны, они принимают участие в регуляции генной активности. Они примерно на 80% состоят из щелочных аминокислот, что дает им возможность взаимодействовать с нуклеиновыми кислотами посредством ионных связей. [c.48]

    Гистон Н1 существенно отличается от других гистонов. Он не входит в состав минимальных нуклеосом (см. раздел 4 этой главы) и участвует в организации 30-нм фибриллы хроматина. Его молекулярная масса превышает 20 ООО. Положительно заряженные аминокислотные остатки Н1, главным образом лизины, находятся в основном в С-конце молекулы и в меньшей степени в Ы-концевой части. Центральная область N-кoнцeвoй половины молекулы богата гидрофобными остатками и образует глобулу. Н1 обладает выраженной доменной структурой, мягкое расщепление трипсином легко делит его на глобулу и хвост . Помимо лизинов хвост богат остатками пролина и глицина и имеет неупорядоченную конформацию. [c.235]

    Гистоны, также обладающие основным характером, имеют более сложный состав и больший молекулярный вес, чем протамины, приближаясь тем самым к обычным белкам. И у этих белков основность обусловлена высоким содержанием аргинина. Они растворимы в воде и осаждаются аммиаком при нагревании они свертываются только в присутствии электролитов и то частично. Гистоны гидролизуются пепсином. Они находятся в ядрах клеток, связанные, как и протамины, с нуклеиновыми кислотами в виде нуклеопротеидов (они получаются легче всего из богатых ядрами органов, например щитовидной железы), [c.446]


    Гистоны — также щелочные белки с низким молекулярным весом, содержащиеся в ядрах животных клеток в соединении с нуклеиновыми кислотами. В растениях гистоны также не обнаружены, но предполагается их присутствие в семенах. [c.221]

    Эксперименты, проведенные с использованием метки, показывают, что только небольщая часть белка рибосом непосредственно участвует в синтезе белка. Основная часть белка служит структурной матрицей для РНК (так же, как и в вирусах). Подобно гистонам, белки рибосом гетерогенны и обладают основными свойствами. Их молекулярные веса равны примерно 25 103. [c.369]

    Протамины представляют собой белки очень низкого молекулярного веса (—6000), обладающие сильноосновными свойствами. Они содержат большое количество остатков аргинина. Их выделяют из зрелой спермы рыб (лососевых, сельди и др.). Гистоны — также основные белки, которые находятся в ядрах соматических клеток, где они тесно связаны с дезоксирибонуклеиновой кислотой. [c.37]

    Сильно основные белки (протамины ) получены из рыб — эти белки имеют очень низкую молекулярную массу и содержат много аргинина. Менее основные белки — гистоны входят в состав клеточных ядер, они связаны с дезоксирибонуклеиновой кислотой. [c.64]

    Гистоны — простые белки, сильноосновные, что обусловлено высоким содержанием в них диаминомонокарбоновых аминокислот (аргинина и лизина), на долю которых приходится 20—35%. Аргинин преобладает в гистонах (до 25%). Содержание лизина несколько ниже (до 10%). Гистоны — белковый компонент нуклеопротеидов. Гистоны регулируют генную активность хроматина. Они содержатся в ядрах клеток высших организмов и состоят из нескольких индивидуальных молекулярных фракций (Н1, Н2А, Н2В, НЗ, Н4), отличающихся содержанием основных аминокислот, электрофоретической подвижностью и, вероятно, функционированием в хроматине. [c.18]

    Гистоны — сильно щелочные белки, растворяющиеся в разбавленных растворах кислот. Содержат большое количество лизина и аргинина. Имеют сравнительно небольшие молекулы с молекулярным весом в среднем около 18 ООО. Изоэлектрическая точка при pH 10—11. [c.441]

    Хромосомы высших организмов, клетки которых содержат ядра, состоят не только из ДНК и из РНК ядрышек они содержат также довольно много белков, так называемых гистонов, молекулярный вес которых колеблется в пределах от 2000 до 10 ООО. Это гораздо ниже молекулярного веса ферментных белков и даже их субъединиц. Как предполагается, гистоны служат для того, чтобы препятствовать преждевременному считыванию информации, которая будет нужна только на более поздних стадиях развития. В таком случае они тоже, возможно, являются своего рода репрессорами (эту проблему мы обсудим несколько позже). [c.288]

    М Na2HP04. Если ДНК с помощью 1 М Na2HP04 элюировали после второй из упомянутых промывок оксиапатита, то она выходила в комплексе с прочно связанными с ней НБХ. Интересно, что аминокислотный состав этих НБХ необычен для основной пх массы остатки кислых аминокислот преобладают над остатками основных. Значит, прочная связь этой фракции НБХ с ДНК носит неионный характер (поэтому их не снимает 3 М Na l). Предполагалось, что такие белки связаны в малой канавке ДНК, свободной от гистонов. Число их невелико — электрофорез выявляет шесть главных белков с молекулярными массами 22, 28, 32, 56, 66 и 71 тыс. Дальтон. [c.236]

    Гистоны. Гистоны являются основными белками (менее щелочными, чем протамины), входящими в состав соматических клеток. У высших организмов нуклеогистоны составляют основной компонент хромосом. Существует несколько типов гистонов. Их молекулярный вес лежит в пределах от 10 000 до 20 000. По-видимому, гистон имеет свою собственную вторичную структуру. Поскольку ДНК в комплексе с гистоном не может служить затравкой при синтезе РНК, было высказано предположение, 1то гистоны каким-то образом регулируют активность гена. Изучение протаминов и гистонов находится еще в самой начальной стадии. [c.358]

    Протамины и гистоны. Данная группа белков отличается рядом характерных физико-химических свойств, своеобразием аминокислотного состава и представлена в основном белками с небольшой молекулярной массой. Протамины обладают выраженными основными свойствами, обусловленными наличием в их составе от 60 до 85% аргинина. Так, сальмин, выделенный из молок семги, состоит на 85% из аргинина. Высоким содержанием аргинина отличается другой хорошо изученный белок—клу-пеин, выделенный из молок сельди из 30 аминокислот в нем на долю аргинина приходится 21 остаток. Расшифрована первичная структура клу-пеина. Протамины хорошо растворимы в воде, изоэлектрическая точка их водных растворов находится в щелочной среде. По современным представлениям, протамины скорее всего являются пептидами, а не белками, поскольку их молекулярная масса не превышает 5000. Они составляют белковый компонент в структуре ряда сложных белков. [c.73]

    Нуклеиновые кислоты, подобно белкам, представляют собой высокомолекулярные соединения. Самые большие из всех известных макромолекул встречаются именно среди нуклеиновых кислот. Есть веские основания полагать, что у некоторых микроорганизмов вся их дезоксирибонуклеиновая кислота (ДНК) представлена, по существу, одной-единственной молекулой с молекулярным весом порядка 10 —10 и даже больше. Нуклеиновые кислоты, как показывает само их название, обладают сильно выраженными кислотными свойствами и при физиологических значениях pH несут отрицательный заряд высокой плотности. Вследствие этого они легко взаимодействуют в клетке с различного рода катионами, чаще всего с основными белками (такими, например, как гистоны и гистоноподобные комплексы), и с ионами щелочноземельных, металлов, особенно с а также [c.121]


    Гистоны также являются белками основного характера. В их состав входят лизин и аргинин, содержание которых, однако, не превышает 20—30%. Молекулярная масса гистонов намного больше нижнего предела молекулярной массы белков. Эти белки сосредоточены в основном в ядрах клеток в составе дезоксирибонуклеопротеинов и играют важную роль в регуляции экспрессии генов (см. главы 2 и 3). [c.73]

    Относительно белкового состава ДНП известно, что все 5 классов гистонов различаются по размерам, аминокислотному составу и величине заряда (всегда положительный). Так, выделяют гистоны, богатые лизином (Н1), молекулярная масса которых составляет в среднем 20000, и богатые аргинином с мол. массой до 15000. Они обозначаются следующими символами  [c.87]

    Гистоны — ядерные белки, играющие важную роль в регуляции генной активности. Они найдены во всех эукариотических клетках и разделены на пять классов (A[, hj, h , h , h ), различающихся по молекулярной массе и аминокислотному составу. Молекулярная масса гистонов находится в интервале от 11 до 22 kDa, а различия в аминокислотном составе касаются лизина и аргинина, содержание которых варьирует от 11 до 29% и от 2 до 14% соответственно. [c.48]

    В ядрах клеток высших животных и растений ДНК входит в состав сложного морфологического образования — хромосомы главным компонентом которого помимо ДНК являются основные белки — гистоны, в небольших количествах присутствует также РНК и негистонные белки. Молекулярная организация хромосом сложна и еще не вполне выяснена установлено, во всяком случае, о внутри одной клетки содержится набор гетерогенных молекул ДНК. Вопрос о размерах интактных молекул ДНК внутри [c.33]

    Ядерный хроматин содержит ДНК, гистоновые и негистоновые белки, небольшое количество РНК. В пространственной организации хромосом можно вьщелить несколько уровней. Первый уровень — нуклеосомный. Нуклеосом-ная нить образуется при взаимодействии ДНК с белками-гистонами. Гистоны представляют собой простые белки с молекулярной массой 14—20 kDa, в аминокислотном составе которых преобладают аргинин и лизин, глицин и цистеин. Преобладание лизина и аргинина придает гистонам щелочной характер и обеспечивает их способность взаимодействовать с кислотными группами ДНК. Во всех типах эукариотических клеток обнаружено 5 классов гистонов [c.182]

    Протамины и. гистоны. Отличаются высоким содержанием диаминокислот, отсутствием серусодержащих ампнокнслот и ограниченным числом аминокислот, входящих в их состав. Белки основного характера с небольшим, сравнительно с другими белками, молекулярным весом. Они растворимы в воде и разбавленных кислотах и осаждаются из растворов при добавлении аммиака, щелочей или белков. К протаминам относятся белки, выделенные из спермы рыб (клупеин, сальмин, стурнн и др.), где они находятся в соединении с нуклеиновыми кислотами. Протамины, растворяясь в воде, дают щелочные растворы, не коагулирующие при нагревании они содержат до 87% аргинина. Основной характер у них более резко выражен, чем у гистонов. Гистоны содержат около 20—30% диаминокислот, обладают ясно выраженным основным характером, в клетках животных находятся в виде соединений с нуклеиновыми кислотами или пигментами (в составе нуклеопротеидов и хромопротеидов). [c.175]

    Другой тип гистонов — аргининовые гистоны, по-видимому, более прочно связан с ДНК, образуя молекулярную форму дезоксирибонуклсопротеида. Последний в свободном состоянии и представляет собой основной компонент диспергированного хроматина, содержащий лабильную ДНК. [c.17]

    По способности извлечения ДНК слабыми солевыми растворами. Лабильная ДНК, представляющая собой обедненный или ненасыщенный гистонами дезоксирибонуклеопротеид диспергированной части хроматина, способна растворяться и извлекаться из ядра 0,14—0,2 М Na l. Остальная часть ДНК находится в составе нуклеогистона, упакованного дополнительными белками (лизиновыми гистонами, негистоновыми белками и т. д.) в более или менее компактный хроматин. Она извлекается из ядра в виде нуклеогистона лишь после обработки 1—2 М Na l в результате диссоциации комплекса на молекулярную форму дезоксирибонуклеопротеида и связывающий его белок. [c.176]

    Пять основных классов гистонов, найденных во всех эукариотических клетках, различаются по молекулярной массе и аминокислотному составу (табл. 27-6). Гистон Н1 - лизин-богатый белок (29% лизина), гистоны Н2А и Н2В содержат [c.873]

    Уже давно было установлено, что клеточные ядра содержат простые основные белки типа гистонов и протаминов с низким молекулярным весом порядка 2000. Протамины — это простые основные белки, богатые аргинином и не содержащие тирозина и триптофана. [c.138]

    Как правило, все ДНК и РНК животного и вирусного происхождения (за исключением, возможно, транспортных РНК) in vivo более или менее прочно связаны с белками. Особый интерес с этой точки зрения представляют гистоны — семейство чрезвычайно гетерогенных основных белков относительно низкого молекулярного веса, которые, по-видимому, образуют прочные стехиометрические комплексы с ДНК во всех соматических клетках любого высшего организма, растения или животного. Гистоны можно отделить от ДНК и подвергнуть хроматографическому разделению. При этом удается получить четыре основные фракции. Другие методы разделения позволили установить, что каждая из этих фракций, начиная от фракции I, наиболее богатой лизином, и кончая фракцией IV, наиболее богатой аргинином, в свою очередь может быть разделена на несколько фракций. С помощью рентгеноструктурного анализа были получены некоторые данные о вторичной структуре свободных гистонов, выделенных из нуклеопротеидов, а также о структуре белка и ДНК в составе нуклеопротеида. В свободных гистонах, судя [c.159]

    В зрелой сперме некоторых рыб ДНК образует комплекс не с гистонами, а с другими основными белками — протаминами. Эти белки обладают резко выраженными основными свойствами и содержат большое количество аргинина, что сближает их в какой-то мере с соответствующей фракцией гистонов. От гистонов их отличает, однако, меньший молекулярный вес, меньшая гетерогенность — по молекулярному весу и аминокислотному составу — [c.160]

    Белки, их химические и физико-химические свойства. Методы выделения и очистки белков классические — диализ, высаживание из растворов современные — распределительное и ионообменное хроматографирование, хроматографирование на молекулярных ситах, электрофорез. Индивидуальность белков.. Цветные реакции белков биуретовая, ксантопротеиновая, сульфгидрильная, Милона, нингидринная. Первичная, вторичная и третичная структуры белков, факторы, определяющие эту структуризацию. Проблема установления первичной структуры белка. Вторичная структура а-спираль и Р-структура, третичная структура. Классификация белков простые и сложные. Простые белки альбумины, глобулины, проламины, прот амины, гистоны и склеропротеины. Сложные белки (протеиды) нуклеопротеиды, глюкопротеиды, липопротеиды, фосфопротеиды, хромопротеиды, металлопротеиды. Заменимые инезаменимые аминокислоты. Проблема синтеза искусственной пищи. [c.189]

    Хороших способов препаративного разделения смесей различных молекул ДНК и РНК пока не существует. Да и получать эти вещества в нативном состоянии, не повреждая их, научились лишь в самые последние годы. При выделении нуклеиновых кислот имеется целый ряд технических препятствий. Самое бо.льшое препятствие — это ферменты рибонуклеаза и дезоксирибонуклеаза, расщепляющие их с огромной скоростью и трудно поддающиеся инактивации. Второе осложнение — чрезвычайная чувствительность макромолекул этих полимеров к гидродинамическим возмущениям. Как указывалось вьппе, достаточно иногда струи, возникающей при быстром выдувании раствора ДНК из пипетки, чтобы вызвать заметную деполимеризацию. Поэтому некоторые из применявшихся до сих пор методов разделения нуклеиновых кислот, дававших пестрые и неясные результаты, были скорее методами разделения частично фрагментированных молекул друг от друга. Это относится, например, к хроматографии препаратов ДНК на колонках с целлюлозным сорбентом EGTEOLA или с глиноземом, покрытым гистоном. Тот факт, что фракционирование ДНК с трансформирующей активностью дало ряд активных фракций, показывает, что здесь имело место не разделение различных молекул ДНК (нет сомнений, что трансформирующая активность по определенному локусу присуща одному типу молекул ДНК), а разделение фрагментов молекул, несущих локус с данной трансформирующей активностью (этот локус может занимать всего 0,1 длины молекулы). То обстоятельство, что при хроматографии осколки разного молекулярного веса будут основательно делиться, не вызывает удивления. Однако это не решает методической задачи фракционирования ДНК на химически индивидуальные вещества. [c.257]

    Гистоны также представляют собой белки, обладающие основными свойствами. Эти белки были открыты Косселем [184] в ядрах клеток, где они находятся в соединении с нуклеиновыми кислотами. Основной характер выражен у гистонов слабее, чем у протаминов, вследствие чего они не осаждаются щелочными растворами пикратов. Возможно, что гистоны являются предшественниками протаминов, так как они были найдены в семенниках неполовозрелых рыб. В силу своего щелочного характера гистоны осаждаются из растворов аммиаком при изоэлектрической точке (около pH 8,5). Это свойство используется при выделении гистонов. Подробнее всего изучен гистон из зобной железы. Для получения этого гистона измельченная зобная железа настаивается с водой, после чего к водному экстракту железы прибавляют уксусную кислоту. При этом выпадает осадок ну-клеогистона, который растворяют в щелочи. Нуклеиновые кислоты удаляют осаждением серной кислотой, а образующуюся сернокис-яую соль гистона осаждают из фильтрата этиловым спиртом [185]. Гистоны имеют более высокий молекулярный вес, чем протамины, и аминокислотный состав гистонов ближе к аии- [c.198]

    Ядерное вещество представляет собой нуклеоид. В отличие от эукариотической клетки ДНК бактериальной клетки не связана с гистонами и не отделена от цитоплазмы ядерной мембраной. Фибриллы бактериальной ДНК достаточно правильно ориентированы, поэтому ядерное вещество мо жно представить как образование, расположенное вдоль большего габарита клетки и имеющее толщину около 3—4 нм, но конфигурация нуклеои-да очень изменчива. ДНК —обособленный элемент, никогда не смешивающийся с цитоплазмой, в старых клетках ДНК упакована более компактно. Предполагают, что весь геном бактериальной клетки представлен одной гигантской замкнутой молекулой ДНК, с молекулярной массой 7 10 . Ее вполне можно расценивать как бактериальную хромосому. Но все же следует помнить, что ДНК бактерий упакованы менее плотно, чем в ядре эукариотической клетки, в ядерном веществе отсутствует мембрана, не найдены ядрышко и набор хромосом, ДНК не связана с основными белками — гистонами. Все это свидетельствует об эволюционно более примитивной форме организации ядерного вещества у прокариотов. Многие бактерии имеют капсулу или дополнительные внешние структуры жгутики, фимбрии, структурные тяжи. [c.33]

    На наш взгляд, задержку митоза, так же как и торможение синтеза ДНК, можно объяснить конфигурационными изменениями ее вторичной и третичной структур, которые происходят в результате повреждений в ее первичной структуре. Конфигурационный переход ДНК может создавать препятствие в таком биологическом процессе, как формирование хромосом в Ог-пе-риод. Действие молекулярного усилителя первичных повреждений ДНК в этом важном процессе можно представить следующим образом. Для образования хромосомной субъединицы — нуклеогистона — требуется стерическое соответствие между спиралью ДНК и аргининовым и лизиновым гистонами. Аргинино-вый гистон находится в частично спирализованной а-форме, в точности соответствующей параметрам большого желоба спирали ДНК в В-форме, в котором он и укладывается. Переход спирали ДНК из В-формы в А-форму нарушает это соответствие. Поэтому процесс протеинизации ДНК может выключиться. Косвенным указанием на возможность этого механизма может служить факт ухода гистона из ядра клетки сразу после облучения. [c.41]

    Роль гистонов в процессе дифференцировки. Функции постоянно действующих репрессоров частично или полностью выполняют гисто-ны — сильноосновные белки, связанные с ядерной ДНК в эукариотических клетках с молекулярной массой 10 ООО—21 ООО молярное содержание лизина и аргинина в молекулах гистонов достигает 25—30 %. Гетеро-генность гистонов по первичной структуре сравнительно невелика. В большинстве клеток эукариотов содержится пять основных гистоновых фракций, некоторые из которых можно разделить еще на 3—5 субфракций, гомогенных по аминокислотной последовательности. Общее число гомогенных по первичной структуре гистоновых фракций не превышает 10—12. Высокий, равномерно распределенный положительный заряд молекул гистонов обусловливает образование прочных комплексов гис-тон — ДНК. В ядрах эукариотических клеток значительная часть ДНК находится в форме дезоксирибонуклеогистонных комплексов. Например, прокариоты не обладают способностью к дифференцировке по причине отсутствия в них сильноосновных белков. Итак, присутствие больших количеств гистонов в ядрах эукариот указывает на существенную роль гистонов в процессе дифференцировки. [c.395]

    Установлено, что в гемоглобине четыре молекулы гема соединены с одной молекулой глобина молекулярный вес гемоглобина составляет приблизительно 68 ООО. Точкой соединения гема и глобина, как полагают, являются два остатка пропио-повой кислоты и железо. Так как глобин представляет собой сильный основной белок гистон, то, вероятно, кислотные группы гема присоединяются к двум основным группам в глобине, а н елезо соединяется с ими-дазольным азотом гистидина. Молекулу гемоглобина в простейшем виде можно представить следующим образом  [c.391]


Смотреть страницы где упоминается термин Гистоны молекулярный вес: [c.211]    [c.79]    [c.400]    [c.655]    [c.219]    [c.36]    [c.416]    [c.417]    [c.448]    [c.14]    [c.32]   
Белки Том 1 (1956) -- [ c.239 , c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Гистоны



© 2025 chem21.info Реклама на сайте