Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контуры жидкие

    В установке КАр-30 (рис. 115, з) очистка воздуха от углеводородов организована по-другому. Блок оборудован двумя параллельно включенными газовыми адсорберами 2, установленными на всем потоке воздуха из регенераторов, поэтому в нижнюю колонну 1 попадает малое количество углеводородов и кубовую жидкость не надо очищать. Основные конденсаторы включены в защитный циркуляционный контур жидкий кислород из сборника 12 центробежным насосом 6 подается в основные конденсаторы 3, из центральных труб которых жидкость подается в адсорберы 2 и затем возвращается в сборник верхней колонны 12. Циркуляция жидкости в конденсаторе 3 криптоновой колонны достигается отбором жидкости из его центральной трубы в испаритель-конденсатор 4 и далее в испаритель криптонового концентратора 5. [c.114]


    Для предприятий с повышенной загрязненностью воздуха выпускаются установки с газовым адсорбером на потоке воздуха после регенераторов и адсорбционной очисткой в циркуляционном контуре жидкого кислорода (перекачиваемого насосом) из основных конденсаторов. Проточность основного конденсатора-испарите-ля обеспечена непрерывным отбором из него около 1 % вырабатываемого кислорода. Ниже приводятся технические характеристики крупных установок фирмы Линде  [c.247]

    Особенности пуска турбокомпрессорных холодильных агрегатированных машин, работающих на хладонах. Компрессор холодильной машины соединен непосредственно с испарителем и конденсатором без арматуры. Поэтому после заполнения контура жидким хладоном необходимо снизить в машине его давление вспомогательным поршневым компрессором до режимного, разрешенного для пуска. Одновременно вспомогательным поршневым компрессором производится частичное захолаживание хладоносителя. После подготовки холодильного контура производят пуск компрессора в соответствии с заводской инструкцией. [c.311]

    В обеих схемах имеется адсорбционная очистка в циркуляционном контуре жидкого кислорода из основных конденсаторов. Циркуляция жидкого кислорода осуществляется насосом. Количество циркулирующего жидкого кислорода около 1100 м )ч (при нормальных условиях) в пересчете на газ. Во второй схеме предусмотрено получение [c.357]

    Кратность циркуляции пульпы в САИ, определяемая отношением количества циркулирующей в контуре жидкой фазы к производительности аппарата. в зависимости от нагрузки изменяется в предела.х от 10 до 22, а время пребывания пульпы в аппарате составляет 3,5—22,5 мин. [c.123]

    Схемы ректификации с тепловым насосом в настоящее время получают широкое распространение в промышленности. В них тепло передается с низшего температурного уровня в конденсаторе на высший в кипятильнике. Тепло передается циркулирующим жидким хладоагентом, испаряющимся в конденсаторе и отнимающим тем самым тепло парового потока в верху колонны, и затем — парами хладоагента, которые после сжатия в компрессоре, охлаждаясь и конденсируясь, испаряют часть жидкости в низу колонны [13]. В качестве циркулирующего хладоагента используют легколетучие испаряющиеся жидкости (внешний хладоагент), например легкие углеводородные газы, аммиак и фреоны. При этом хладоагент циркулирует по внешнему контуру (рис. П-6, aj. Пары хладоагента нагреваются в теплообменнике 2, сжимаются ъ компрессоре до температуры выше температуры испарения остатка и конденсируются в подогревателе 4, при этом создается поток отгонного пара в колонне. Жидкость из подогревателя 4 после охлаждения в теплообменнике 2 дросселируется в дросселе до [c.110]


    Существующие схемы управления для отделения синтеза аммиака предусматривают ряд сепаратных контуров управления температура горячей точки регулируется изменением расхода циркуляционного газа по байпасу мимо встроенного теплообменника колонны синтеза температура циркулирующего газа (ЦГ) на выходе колонны синтеза используется для изменения расхода ЦГ по байпасу вокруг выносного теплообменника (данный контур управления имеет характер резервного и часто в практике ведения технологического процесса не используется). Предусмотрена автоматическая стабилизация уровней испарителя жидкого аммиака (ЖА) с помощью подачи ЖА, а также уровней в сепараторе и кубе конденсационной колонны регулированием отбора ЖА на склад. Отделение синтеза иногда функционирует при постоянной продувке. [c.342]

    Расчет трубопроводов аммиачного контура — это определение категории трубопроводов, выбор вида и материала труб, расчет сечения трубопроводов и проверка фактического падения давления в коммуникациях. Все трубопроводы для аммиака, независимо от давления и температуры, относятся к категории I [9]. При диаметре условного прохода до 40 мм применяют бесшовные холоднотянутые трубы, при больших диаметрах — бесшовные горячекатаные. При температуре эксплуатации выше —40 °С используют трубы, изготовленные из стали 20, Диаметры трубопроводов, непосредственно присоединяемых к компрессорам и основным аппаратам, определяют по диаметру выходного патрубка, диаметры общих коммуникаций — по рекомендуемым значениям оптимальной скорости для паров — 15 м/с, для жидкого аммиака — 0,5 м/с [6, 9]. Общая схема расчета трубопроводов соответствует принятой в гл. I. [c.178]

    Емкостные аппараты предназначены в основном для хранения жидких продуктов. Для этого типа аппаратуры характерны повреждения целостности и формы. Подготовленный к ремонту аппарат осматривается. Участки поверхности аппарата и сварные швы, на которых обнаружены несквозные трещины, проверяются керосином. Этим же способом уточняются размеры и контуры сквозных трещин. Для предотвращения дальнейшего развития трещин в концах их высверливают отверстия диаметром 10—15 мм. [c.216]

    Термический перенос массы является наиболее опасным и часто встречающимся на практике процессом в горячей зоне жидкометаллического контура происходит растворение твердого металла в жидком, а в холодной зоне выделение кристаллов из раствора. Незатухающий характер термического переноса массы — главная его опасность. [c.143]

    Необходимость устройства газового циркуляционного контура для стабилизации состава газовой фазы определяется характером реакции. Если продукты реакции не попадают в газовую фазу, как, например, в процессах гидрирования, то надобность в таком контуре отпадает. В других случаях, например при окислении в жидкой фазе воздухом, когда продукты реакции выделяются в газовую фазу, наличие циркуляционного контура по газу может оказаться желательным. Однако из-за сложности его осуществления лучше [c.417]

    Наиболее распространенным способо-м перемешивания в жидких средах является механическое перемешивание при помощи мешалок, снабженных лопастями той или иной формы. Помимо механического перемешивания, применяют также перемешивание сжатым воздухом. Иногда жидкости перемешивают многократным перекачиванием их насосом через аппарат, т. е. путем циркуляции в замкнутом контуре. Оба последних способа требуют сравнительно большого расхода энергии, а перемешивание воздухом сопряжено также с возможным окислением или испарением продуктов. [c.346]

    Назначение насоса и схема установки. Ознакомившись с основными типами насосов, приступают к разработке схемы установки (или группы установок), в которой работает насос. Хотя назначением насоса является перекачивание, цели перекачивания могут быть различны опорожнение или заполнение емкостей перемещение материалов в различных технологических процессах в химической, горной и других отраслях циркуляция жидкости по замкнутому контуру (например, движение жидких тепло- [c.64]

    Любая точка, например N. лежащая внутри контура, ограниченного бинодальной кривой, отвечает двухфазной системе, тогда как любая точка, находящаяся вне этого контура, характеризует однофазную систему (гомогенный жидкий раствор). [c.304]

    Процессы термического разложения углеводородов возможно осуществить также в расплавах металлов и их солей. В этом случае обеспечивается интенсивная теплопередача между расплавленным металлом или солью и пиролизуемым сырьем, эффективное разделение продуктов реакции и теплоносителя даже при переработке тяжелых видов сырья, значительное повышение теплового КПД процесса за счет циркуляции жидкого металла в замкнутом контуре. [c.94]

    При газохроматографическом методе анализа жидкие СНГ испаряются в потоке инертного газа и проходят через разделительную газожидкостную колонку, в которой поддерживается заданная температура. Пары СНГ сепарируются на составные углеводородные компоненты, которые определяются в потоке газа по теплопроводности с помощью датчика ионизации пламени или датчика, использующего чистые углеводороды для контроля относительного времени удерживания. В ходе анализа снимается хроматограмма, состоящая из целого ряда пиков . Каждый из них соответствует определенному чистому углеводороду, содержание которого пропорционально площади, ограничиваемой контурами пика . [c.84]


    Расчет установок с естественной циркуляцией жидкого нагревающего агента ведут исходя из равенства движущего напора в контуре и гидравлического сопротивления контура [c.315]

    Ширина полос поглощения жидкостей на два-четыре порядка превосходит ширину линий поглощения газов при обычных давлениях, а ее зависимость от изменений среды (растворитель, другие компоненты смеси, температура) относительно много меньше зависимости ширины линий газа от давления. У жидких углеводородов ширина полос достигает 30 см -, как правило, она имеет величину от 15 до —5 см . Примерно в тех же пределах меняется и ширина полос обычных призменных монохроматоров. Поэтому наблюдаемые контуры полос оказываются в большей иди меньшей степени сглаженными (рис. 7), но в отличие от газов наблюдаемая величина может сравниваться с соответствующей истинной в той же точке . В последние годы инфракрасные спектрофотометры быстро совершенствуются, повышается их практическая разрешающая способность и соответственно измеряемые интенсивности полос приближаются к истинным. Например, такие большие расхождения, как 13 приведенном выше примере бензола, уже сравнительно редки, а обычные величины расхождений составляют 10—100%. [c.497]

    Ч у л а н о в с к п ii В. М. Контур С — Н полосы поглощения в жидком хлороформе. Докл. АН СССР, 1952, 85, J (i, 1273—1276. [c.658]

    В гидродинамике доказывается для весьма широкого класса практически важных движений, что и в случае неустановившегося движения циркуляция по замкнутому контуру постоянна, однако в этом случае рассматривается так называемый жидкий контур, т. е. контур, состоящий из одних и тех же частиц. Последнее утверждение называется теоремой Томпсона. Из этой теоремы следует, что если некоторая масса жидкости в начальный момент времени имела безвихревое движение или покоилась, то и впредь в этой части жидкости не возникает вихрей, о чем уже упоминалось выше (см. также учебник Н. Я. Фабриканта, цитированный выше, в первой сноске). [c.105]

    В современных установках, особенно большой производительности, применяют адсорберы, выполненные в виде полностью заваренных аппаратов с двумя приваренными сферическими днищами. Материал — нержавеющая сталь Х18Н10Т. Такая конструкция проще, дешевле и более надежна в отношении сохранения полной герметичности аппарата в процессе работы. Адсорберы устанавливают на потоках кубовой жидкости и газообразного воздуха после регенераторов (для очистки от ацетилена прямого и петлевого воздуха), а также в циркуляционном контуре жидкого [c.475]

    Наиболее прогрессивньши и экономичными являются шаровые (сферические) резервуары, требующие меньшего расхода металла на единицу объема. Поскольку напряжения в таких резервуарах более равномерно распределяются по контуру оболочки, стенки их можно принять меньшей толщины. Резервуары должны быть оснащены соответствующими контрольно-измерительными приборами (указателями уровня жидкой фазы, давления паровой фазы, температуры и др.), предохранительными клапанами, люками (лазами), устройствами для безопасного отбора проб жидкой и паровой фаз. На трубопроводе, предназначенном для заполнения резервуара, должен быть установлен обратный клапан, а на расходном трубопроводе — клапан, автоматически отключающий трубопровод при его разрыве или другой аварии на нем. Для защиты от действия солнечных лучей наземные резервуары окрашивают в светлые тона, изолируют, оборудуют водяным орошением, теневыми кожухами. Необходим тщательный контроль состояния резервуаров, так как даже в средних широтах при нарушениях или потемнении окраски температура внутри резервуара достигает 60 °С. [c.285]

    Другая группа четырехкомпонентных систем исследована для тех же целей Чангом и Маултоном [4а]. Подробные данные опубликованы для системы вода — этанол — бензол — этилизовалерат. Характеристика этих систем такова, что взаимная смешиваемость двух пар их жидких компонентов ничтожно мала . Благодаря этому ограничению контуры линий растворимости имеют прямолинейную форму в противоположность таким кривым для системы, описанной выше [151, в которую входит анилин, обладающий ограниченной взаимной смешиваемостью с водой. [c.182]

    Если при исследованиях используют реальные газы с высокой плотностью, например фреоны, то при ограниченной мощности приводного двигателя приходится создавать давление на всасывании ниже атмосферного. В этом случае все режимы надо пройти за одно испытание. Предварительную обработку результатоп необходимо при этом вести в темпе проведения опытов, т. е. определять значения АТ, т] и я сразу же для каждой экспериментальной точки. Сопоставляя результаты расчетов, всегда можно определить момент, когда подсасывание атмосферного воздуха начинает влиять на результаты исследований. То]-д ) испытания прерывают, контур вакуумируют и заправл5пот заново. После остановки, даже не очень длительной (16—20 ч), контур также следует снова заправлять чистым газом, так 1(лк в него почти всегда проникает воздух. С учетом этой специфики надо стремиться к тому, чтобы объем контура был по возможности наименьшим. Если ограничений по мощности нет, то начальное давление в контуре выбирают таким, чтобы при самой низкой температуре охлаждающей воды не происходило конденсации газа в газовом теплообменнике. Это требование важно при определении мощности ступени по измерениям температур, когда наличие жидкой фазы в потоке на входе в ступень приводит к резкому увеличению погрешности в измерении температуры. [c.133]

    В случаях, когда нагрузки по пару и жидкости значительно изменяются по высоте колонны, ее целесообразно выполнять из частей разного диаметра и использовать тарелки с различным числом потоков. Например, атмосферная колонна высокопроизводительной установки (рис. 100) имеет в верхней и нижней частях меныпий диаметр и тарелки с различным числом потоков. В сечениях с большим количеством жидкости — контуре циркуляционных орошений, средней и отгонной частях колонны — установлены четырехпоточпые клапанные тарелки. В сечении с небольшой жидкостной нагрузкой — над вводом сырья — установлены одно-поточные тарелки. Переток флегмы при смене числа потоков на тарелках осуществляется распределительными коллекторами. Для вывода орошения в верхней и средней частях колонны установлены сборные тарелки с трубами для прохода паров. Эти тарелки предназначены также для перераспределения флегмы при ее перетоке с двухпоточных на четырехпоточные тарелки. В месте ввода сырья установлено устройство, состоящее из трех конических обечаек, нижняя из которых является сборником-распределителем флегмы. Сырьевой поток подается тангенциально по двум штуцерам из одного штуцера поток попадает в кольцевое пространство между верхней и средней коническими обечайками, а из второго — в область между средней и нижней обечайками. Такое разделение потоков способствует более спокойному их вводу и лучшей сепарации жидкой фазы. [c.131]

    Облучение можно производить и внутри активной зоны атомного реактора. Около 10% выделяющейся в реакторе энергии приходится на р- и у-излучение. Источниками излучения в реакторах являются а) продукты распада атомного горючего (расщепляющегося материала), б) потоки топлива в наружных контурах реакторов, работающих на жидком горючем (раствор ураниловых солей — ннтратуранила или уранилсульфата в воде), в) активная зона реактора. Выгруженное твердое горючее также может быть использовано для облучения. [c.258]

    Процесс протекает д давлением в жидкой фазе в проточном режиме, однако конструкция реактора позволяет осуществлять циркуляцию изобутана вместе с непрореагировавшими за отдельный проход бутенами по замкнутому контуру, благодаря чему удавалось поддерживать высокие внутренние соотношения изобутан бутены в реакторе при низких соотношениях этих компонентов в подаваемой в реактор реакционной смеси. Перед подачей в систему смеси H3o6yTanai и бутепов через слой катализатора нроврдили циркуляцию чистого изобутана. Условия опытов следующие температура 80 "С, давление 1,3 МПа, соотношение изобутан бутены в реакциопцой смеси, подаваемой в реактор, 8 1, объемная скорость подачи реакционной смеси по бутенам 0,25 ч , продолжительность 8—10 ч. [c.340]

    Присутствие катализатора К не меняет точку равновесия реакпии, а изменяет скорость достижения этого равновесия. Как упоминалось, в присутствии катализатора сопротивление реакции шунтируется параллельным контуром с малым сопротивлением реакции. В данном случае диссипация химической энергии по мере приближения к состоянию химического равновесия учитывается многосвязным диссипативным Л-иолем. Прп этом па связях Д-поля возникает одпнаковая потоковая переменная и происходит накопление промежуточного активированного комплекса (АК). Такое распределение силовых е-переменных и потоковых /-переменных характерно для слияющих структур типа 1- и 0-узлов, и это позволяет перейти от Я-псля к эквивалентному диаграммному комплексу, состоящему из 1- и 0-узлов и односвязных диссипативных Л-элементов (рис. 5.9). Здесь элементы ТВ и Гд отражают конкретный механизм межфазного переноса, элемент 5 с нижним индексом компонента символизирует источник (сток) этого компс-нента, один верхний штрих обозначает жидкую фазу, два штриха — газовую. [c.228]

    Контур рабочего тела аммиачной компрессионной холодильной машины включает основное хол1)дильное оборудование (компрессоры X, конденсаторы V///, испарители ///, автоматические дроссельные устройства /V) и вспомогательные аппараты (отделители жидкости X/, маслоотделители /X, ресиверы V, приборы автоматического регулирования и контроля, арматуру). Пары аммиака из испарителя III отсасываются компрессором X и нагнетаются в конденсатор VII (, где сжижаются, отдавая тепло охлаждающей воде. Жидкий аммиак через дроссельное устройство IV подается в испаритель, где превращается в пар, воспринимая тепло. [c.174]

    Как указывалось, при использовании динамической методики исследования кинетики жидкофазных реакций не применяют внешние контуры циркуляции жидкости, а используют аппараты полного смешения в качестве дифференциальных реакторов. Однако при газожидкостных реакциях вопрос о циркуляции газовой фазы не может решаться так просто. Если пеконденсируемые продукты реакции не попадают в газовую фазу, как, например, в процессах гидрирования, то надобность в таком контуре отпадает. В других случаях (например, при процессах окисления жидких углеводородов воздухом, когда выде.ляются газообразные продукты реакции) наличие циркуляционного контура по газу может оказаться желательным. Однако из-за длительности установления стационарного состояния и технической сложности осуществления такого контура влияние состава газа исследуют большей частью на искусственных смесях. [c.71]

    Аппараты непрерывного действия более многообразны. Они могут различаться по гидродинамическому режиму. Смешение, близкое к идеальному по обеим фазам, осуществляется в проточных аппаратах с интенсивным механическим перемешиванием (например, в аппаратах с внутренним контуром циркуляции). В этом случае применяют суспендированный катализатор с последующим его от-фильтровыванием, хотя имеются конструктивные разработки, позволяющие использовать и неподвижный зерненный катализатор. В аппаратах колонного типа с неподвижным или суспендированным катализатором по сплошной (жидкой) фазе обычно имеет место режим [c.184]

    Для изучения влияния условий риформирования на показатели процесса и качество катализата первой стадии были проведены опыты при давлении 3.0 МПа., циркуляции водородсодержащего газа 1200 нл/л сырья и объемной скорости подачи сырья 3 и 5 час Результаты опытов приведены в таблице 5.8. гам же приведена характеристика исходного сырья. В изученных условиях риформирования протекают реакции ароматизации, изомеризации и гидрокрекинга в результате выход парафиновых углеводородов нормального строения снижается до 15,0-20,9% мае. в сравнении с содержанием их в сырьс 25,8%о мае., т.е. на 4,9-10,8% мае. Уменьщение выхода н-парафиновьгх углеводородов объясняется не только их гидрокрекингом и дегидроциклизацией, но и их изомеризацией, поскольку выход жидких продуктов превыщает 90%> мае. 1 аким образом, на платиноэрионитный катализатов СГ-ЗП при комбинированной переработке может постпупать сырьё, содержащее на 5-1% мае. меньще н-парафиновых углеводородов, чем в исходном сырье, что с учетом выхода жидких продуктов первой стадии должно повысить суммарный выход стабильного катализата на 3-5%о мае. Экспериментальная проверка данного вывода была осуществлена на пилотной установке с двумя последовательно соединенными реакторами, работающими в едином циркуляционном контуре. [c.130]

    Первое сообщение о спонтанной турбулентности на поверхности контакта двух жидких фаз сделали в 1953 г. Льюис и Пратт [651. Дальнейшие исследовательские материалы, подтверждающие первые наблюдения, были опубликованы Льюисом [641, Гарнером [35], Зигвартом и Нассенштейном [85, 861, а также Шервудом и Веем [941. Наблюдения проводились на каплях, погруженных в другую жидкость, или на плоской поверхности контакта двух фаз. Явления фотографировались с применением соответствующего увеличения и освещения или снимались на кинопленку с частотой до 40 кадров в секунду. Капля по отношению к окружающей жидкости задавалась третьим компонентом, который во время наблюдений переходил через поверхность касания в другую фазу. Установлено, что прохождение растворенного компонента может давать очень различные картины, как это показано на рис. 1-27. Это увеличенные фотографии конца капилляра 1 с каплей 2 (источник света 5), окруженной жидкостью 4. Фотографировалась система, в которой капли были образованы раствором уксусной кислоты в четыреххлористом углероде, а окружающей жидкостью была вода. Концентрация кислоты составляла 1—10%, На рис. 1-27, а при концентрации кислоты 1 Ч,, с обеих сторон капли видны контуры правильного слоя, через ко- [c.56]

    Ванна печи. Печь имеет прямоугольную ванну с округленными углами. Футеровка стенок ванны выполняется блоками из плавленого корунда. Блоки предварительно не обрабатываются и идут на кладку сразу после литья. Зазор между блоками принимается минимальным, практически он составляет 10—12 мм. Кладка осуществляется на порошке корунд (экораль) тониной 0,2 мм на жидком стекле. Модуль жидкого стекла 1,34. Верхний пояс стенки и нижний выкладываются из высокоглиноземистого шамотного кирпича. Подина ванны футеруется углеродистыми блоками, уложенными на коксовую пыль размером 0,2—1 мм. Толщина футеровки стенок 800 мм. Зазор между футеровкой и кожухом ванны 70 мм забивается шлаковатой. Температурное расширение корунда поглощается за счет кладки углов ванны печи, которые выкладываются не по контуру кожуха, а с зазором и засыпается порошком корунда. Зазоры и слой изоляции из шлаковаты позволяют футеровке нормально расширяться без деформации стенок. [c.133]

    Обычно теплоносители пропускают через открытые жидкостные бани (см. рис. 203), змеевики (рис. 333) или кожухи (рис. 334), которыми снабжается куб колонны. В тех случаях когда для получения температур выше 100 °С нельзя применить пар высокого давления, используют перегретый пар (см. разд. 6.1). Жидкие теплоносители — парафиновые масла, глицерин или триэтиленгли-коль — нагревают в замкнутом контуре с помощью обогревающего змеевика (см. рис. 317) или термостата. Для обогрева пилотных и промышленных стеклянных аппаратов в качестве теплоносителей в основном используют водяной пар и нагретое масло. На рис. 335 показаны погружные теплообменники для пилотных и промышленных аппаратов с мешалками и без них. В качестве открытых жидкостных бань используют водяные бани для температур до 80 °С, масляные бани для температур до 330 °С (см. табл. 39), бани из расплава солей для температур 150— 550 °С (см. табл. 39) песчаные бани для любых температур, бани с расплавленным металлическим сплавом для температур выше 70 °С (см. рис. 318). [c.398]

    В первом случае используется энергия всплывающих пузырьков газа, вовлекающих в свое движение жидкость, во втором — энергия струи (или струй) исходной газожидкостной смеси, поступающей в реактор снизу через сопло (или систему сопел). Схема реактора, в котором использованы оба эффекта, приведена на рис. 3.13. Смесь в аппаратах с гидродинамическим перемешиванием циркулирует по контуру, образуемому с помощью йибо наружной опускной трубы (или системы труб), либо цилиндра (диффузора), расположенного внутри реактора вдоль его оси (рис. 3.13). Кратность циркуляции (отношение массовых расходов циркулирующего и входного потоков) составляет 5—10, что обычно достаточно для того, чтобы принимать в практических расчетах наличие полного перемешивания (по жидкой фазе). [c.136]

    Эта простейшая модель не указывает, каким образом в ядре происходит замыкание электрической цепи через круговой контур. Кроме того, она не учитывает обратного влияния тока на движение вихря, которое не позволяет ему двигаться в плоскости, параллельной экваториальной. Поэтому следует искать модель более сложного характера. Одна из них — модель Э. Булларда, основанная на строении ядра, состоящего из внутренней твердой и внешней жидкой фаз. [c.141]

    Прежде чем вычислять площадь по формуле (VIII.2), необходимо, чтобы контур исследуемой полосы действительно описывался уравнением Лоренца для достаточно больших значений V—Умакс-Обычно чем шире полоса, тем лучше она описывается уравнением Лоренца. Чтобы перейти от найденной по уравнению (УИ1.2) площади 5 к абсолютной интегральной интенсивности А, используют поправочные множители, которые учитывают влияние щели на интегральную интенсивность поглощения. Если ширина полосы составляет 10—20 см (что типично для многих полос органических соединений в жидкой фазе), а спектральная ширина щели спектрометра не превышает 3—4 см , то значения 5 и Л отличаются в среднем всего на 5%, что находится в пределах ошибки эксперимента. [c.215]

    Ч у л а н о в с к и й В. М., Бугрова М, П., М и р о н о в а А. И. Контур полос жидких бромоформа и хлороформа при поглощении в инфракрасной области и при т омбииационном рассеянии света. Изв. АИ СССР, сер. физ., 1950, 14,. № 4 406—410. [c.658]

    Здесь 1, h — длпны отрезков аЬ, ЬА мь 0)2 — углы наклона этих отрезков, которые параллельны соответствующпм участкам центрального тела р, рг — давления за первым п вторым косыми скачками. Разделив силу Хцоп на скоростной напор набегающего потока и площадь лобового сечения обечайки Fa, получим коэффициент дополнительного сопротивления жидкого контура аЬА  [c.484]


Смотреть страницы где упоминается термин Контуры жидкие: [c.285]    [c.139]    [c.285]    [c.297]    [c.207]    [c.291]    [c.220]    [c.316]    [c.24]   
Свободноконвективные течения, тепло- и массообмен Кн.2 (1991) -- [ c.309 ]

Свободноконвективные течения тепло- и массообмен Т2 (1991) -- [ c.309 ]




ПОИСК





Смотрите так же термины и статьи:

Контур



© 2024 chem21.info Реклама на сайте