Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

латунь магний

    Трифторид хлора можно длительно хранить в таре, изготовленной из обычной углеродистой стали. Вполне удовлетворительную коррозионную стойкость в этом окислителе имеют такие металлы, как медь, латунь, магний и др. Весьма стойки к воздействию трифторида хлора нержавеющая сталь, никель и монельметалл. В качестве прокладочно-уплотнительного материала в аппаратуре, предназначенной для работы с трифторидом хлора, можно использовать медь и тефлон, пропитанный 40% фтористой медью. [c.68]


    Как уже указывалось, ударная труба представляет собой устройство, в котором газообразные реагирующие вещества чрезвычайно быстро нагреваются до весьма высоких температур под действием ударных волн. Ударная волна может создаваться при быстром вдвигании твердого порщня в газ. Однако гораздо удобнее применять для создания ударной волны газообразный поршень . В этом случае реактор типа ударной трубы может представлять собой трубу диаметром несколько сантиметров и длиной 3—15 м, разделенную диафрагмой нл две секции. В одну секцию ( камеру ) подается толкающий или рабочий газ под высоким давлением во второй ( канале ) секции содержатся реагирующие вещества под более низким давлением (реагирующий или ведомый газ). Химическая ударная труба отличается от простой тем, что в ней имеется вторая диафрагма, отделяющая секцию высокого давления от большого откачанного резервуара. Реакторы обоих типов представлены схематически на рис. 1. При небольшой разности давлений в обеих секциях диафрагмы могут изготовляться из пластмассы, целлофана и даже бу-маги. Если же разность давлений достигает десятков атмосфер, то применяют металлические диафрагмы — из меди, латуни, магния, алюминия или нержавеющей стали [36]. [c.303]

    Из эпизодических работ можно здесь упомянуть те, которые позволяют констатировать возникновение текстур на поверхности латуни, магния и других металлов в результате пластической деформации при шлифовке. Возможно, что такое особое строение поверхности металла отражается и на ее свойствах. [c.39]

    Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделии, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение миогих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. стр. 571). Значительное количество цинка расходуется для изготовления гальванических элементов. [c.621]

    Значительно чаще применяют металлические сплавы на основе железа (сталь и чугун), алюминия, магния, меди (бронза и латунь), никеля, ниобия, титана, тантала, циркония и других металлов. [c.175]

    Карбонат циклогексиламина имеет несколько большее давление паров (53,32 Па при 25 °С), и его пары также эффективно ингибируют коррозию стали [45]. Высокое давление паров обеспечивает более быструю защиту стальной поверхности как при изготовлении первичной упаковки, так и при необходимости вскрытия и повторного запечатывания упаковки. При проведении этих операций концентрация пара может падать ниже необходимого для защиты стали значения. Пары этого вещества уменьшают коррозию алюминия, цинка и припоя, однако не оказывают ингибирующего действия на кадмий и усиливают коррозию меди, латуни и магния. [c.273]


    Для питания паровых котлов часто пользуются конденсатом (или водой, очищенной с помощью ионообменных масс) лишь с небольшой добавкой неочищенной природной воды. Такая вода характеризуется малой жесткостью. Кроме того, конденсат, проходя через латунные трубки охладительных и др. систем, нередко загрязняется катионами меди, цинка и др. Так как медь и др. катионы также образуют комплексы с трило-ном и блокируют индикатор, то для определения содержания кальция и магния необходимо устранить влияние тяжелых металлов. Обычно это достигается введением в раствор небольшого количества сернистого натрия .  [c.433]

    Схема эксперимента показана на рис. XIV. . Источником света может служить ртутная лампа. Монохроматор выделяет излучение с определенной длиной волны X (частот V или со = 2яу). Далее поляризатор формирует линейно поляризованный луч, который направляется в отверстие в магните (электромагните), ось которого совпадает с направлением магнитного поля В. При использовании электромагнитов значения индукции достигают 1 Т с однородностью 10 Т/см в зазоре 7 см. Поляриметрическая кювета для жидкостей длиной 3 см и объемом 2 см термостатируется и фиксируется в зазоре латунными держателями. Естественно, что технические данные установок могут несколько отличаться. Анализатор позволяет определять угол поворота плоскости поляризации с высокой точностью (до - 10 град). Так же могут исследоваться газы и твердые вещества, а в частности молекулы, изолированные в матрице. Регистрация прошедшего излучения производится фотоэлектрическим методом. Поскольку измерение угла поворота осуществляется методом компенсации, т. е. до полного исчезновения прохождения света, вводится компенсатор (рис. XIV.]). [c.248]

    Отливки цз алюминия и магния чистые и слаболегированные Штамповки (чистые и низколегированные) сталь, алюминий, магний, серебро, никель, вольфрам, титан Неметаллы стекло, фарфор Пластики (полистирол, оргстекло, резина) Отливки алюминиевые и магниевые сплавы, низколегированная сталь, чугун со сфероидальным графитом Штамповки медь, латунь, бронза, металлокерамика [c.278]

    В промышленности часто используют не чистые металлы, а их смеси, называемые сплавами, В сплаве свойства одного компонента обычно удачно дополняют свойства другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком, называемые латунью, являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает хорошей пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав дюралюмин (дюраль), содержащий медь, магний и марганец. Дюралюмин, не теряя свойств самого алюминия, приобретает высокую твердость и поэтому используется в авиационной технике. Сплавы железа с углеродом (и добавками других металлов)-это известные чугун и сталь. [c.157]

    Сплавы — системы, состоящие из двух или нескольких металлов (или метал тов и неметаллов). В технике используют металлические сплавы, весьма разнообразные по составу и свойствам гораздо шире, чем чистые металлы. Известно более 8000 сплавов и десятки тысяч их модификаций. Различают несколько типов сплавов по основному компоненту черные сплавы (чугун, сталь), т. е. сплавы на основе железа цветные сплавы (бронзы, латуни), важнейшим компонентом кото рых является медь легкие сплавы (дюралюмин, магналий и др.), содержащие алюминий нли магний благородные и редкие сплавы, основными компонентами которых бывают платина, золото, серебро, ванадий, молибден и др. [c.267]

    Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]

    Около 40% производимого цинка используют для цинкования железа, определенное количество — в гидрометаллургии для цементации, при производстве гальванических элементов. Сплавы цинка (главным образом латуни и жидкотекучие литейные сплавы с алюминием, медью и магнием) обладают ценными свойствами и широко применяются в различных отраслях промышленности. Они пригодны также в качестве полиграфических сплавов для литья шрифтов. [c.384]

    Хроматирование применяют на цинке, алюминии, магнии и латуни. Обработку проводят, используя водный раствор хромовой кислоты или хромата, часто содержащий другие добавки, например фосфорную и соляную кислоты. На поверхности образуется тонкое (0,1-2,0 г/м ) хроматное покрытие зеленого, желтого, черного или бледно-голубого цвета, которое заметно улучшает ее коррозионную стойкость. Хроматирование широко применяют для оцинкованной стали с целью защитить ее от образования белой ржавчины во время транспортировки и хранения. Его значительное неудобство состоит, однако, в том, что у работающих с некоторыми типами хроматированных материалов, может возникнуть аллергическая экзема в результате контакта с шестивалентным хромом. Другое неудобство состоит в том, что такие средства защиты от белой ржавчины труднее удаляются и могут впоследствии затруднить окрашивание. В настоящее время предпринимают значительные усилия чтобы разработать эффективную защиту против белой ржавчины, не имеющую недостатков свойственных хроматированию. [c.84]


    Ряд металлов в порядке возрастания электродного потенциала в морской воде можно представить следующим образом магний, цинк, алюминий, железо, углеродистая сталь, хастеллой С, хастеллой В, латунь, медь, бронза, коррозионно-стойкие стали (в пассивном состоянии) типа 18—8 и 17—33, серебро, золото [29]. [c.74]

    Межкристаллитной коррозии, развивающейся по границам зерен, способствует наличие примесей. Этот вид коррозии чаще всего наблюдается у латуней, работающих в средах, содержащих серные соединения. Она проникает лишь на глубину, соответствующую размеру зерна, а в некоторых случаях проявляется в виде гнезда, где граница между отдельными зернами исчезает и связь между ними ослабевает. Коррозия по границам зерен в концентрированных растворах щелочей, сульфатов и хлорида магния наблюдается у нагревателей из алюминиевых бронз, работающих при высокой температуре. [c.117]

    Материалы на медной основе, за исключением алюминиевых латуней, не рекомендуется эксплуатировать в галогенсодержащих средах, несмотря на низкую скорость коррозии. По степени повыщения агрессивности галогены можно расставить в следующем порядке фториды, хлориды, бромиды и иодиды. В нейтральном растворе хлорида натрия скорость коррозии увеличивается с 0,6—3 г/м2-24 ч до 3—45г/м2-24 ч при изменении температуры от обычной до 75°С. В растворах хлоридов щелочноземельных металлов и хлорида магния скорость коррозии достигает 1,2—36 г/м -24 ч. [c.121]

    В растворы хлорида кальция необходимо вводить 1,6—2,0 кг/м бихромата калия с добавкой 0,8—1,0 кг/м щелочи, чтобы превратить бихромат в хромат. При pH 9 хроматы снижают коррозию углеродистой стали примерно в пять раз [1]. Для рассолов хлорида натрия или смеси хлоридов кальция и магния концентрация бихромата калия должна быть увеличена в два-три раза, т. е. до 3—4 кг/м . Для защиты оборудования из алюминия необходимо вводить в рассол 10 кг/м бихромата калия [20]. Бихромат эффективен и для защиты латуни добавка 2 кг/м бихромата калия обеспечивает защиту латунных образцов в рассоле в течение 5 лет [4]. [c.330]

    Алюминнй. Бронза. Висмут. . Вольфрам. Вуда чсплав Галлий. Железо кован Золото. . Кадмий. . Калий.. . Кобальт. . Константан Латунь. Магний. . Манганин. Марганец. Медь. . .  [c.70]

    Металлы Алюминий и его сплавы Сталь и ее сплавы Титан Серебро Хромовре покрытие Никель и его сплавы Олово, покрытие Индий Медь Латунь Магний Кадмиевые покрытия Свинец Цинковое покрытие [c.142]

    По вышеизложенным причинам значительно усиливают смешанную коррозию большинства цветных металлов такие маслорастворимые ингибиторы коррозии, как жирные и алифатические амины, имидазолины, некоторые сукцинимиды, соли аминов и жирных кислот (МСДА-1), триэтаноламиновое мыло олеиновой кислоты и др. (см. табл. 16). Многие из них усиливают коррозию свинца (бронзы, латуни, магния и др.) в 5—10 раз, причем об интенсивном развитии в этом случае электрохимических процессов свидетельствует повышение разности потенциалов между пластинками (сталь — свинец, медь — свинец), почти вдвое превосходящей разность потенциалов, возникающую к концу опыта на чистом масле. Поэтому маслорастворимые ингибиторы коррозии для моторных масел выбирают, учитывая прежде всего их влияние на коррозионные свойства этих масел при высоких температурах. [c.82]

    Одним из методов борьбы с газовой коррозией меди и ее сплавов является легирование их магнием, алюминием, кремнием и др. Наиболее широко применяются при высоких температурах алюмиынепые бронзы с содержанием алюминия до 10% и бериллиевые бронзы (2,5% Ве). Эти бронзы жаростойки до 300° С. На латунях с содержанием цинка выше 20% образуется защитная пленка ZnO, которая при высоких температурах об-./ ада< т хорошими защитными свойствами. [c.255]

    Сплавы алюминия с марганцем и магнием (типа АМЦ, АМГ) хорошо деформируются и свариваются дуговой сваркой в среде аргона или автоматической сваркой по флюсу. Алюминиевые сплавы, обладающие большей прочностью, такие, как АМГ5В и АМГ6, обрабатываются несколько труднее, но могут использоваться при изготовлении аппаратов, работающих под давлением, вместо дефицитных меди и латуни, при этом значительно уменьшаются вес изделий и их стоимость. Свойства некоторых алюминиевых сплавов при низких температурах приведены в табл. 21. [c.142]

    Дхя выяснения причины коррозии латуни были испытаны в контейнерах образцы нескольких партий ПЭЭ с различным содержанием влаги и свободных монокарбоновых кислот, а также эти же образцы ПЭЭ после очистки и сушки с помощью адсорбентов и осушителей таких, как сульфат магния, цеолит СаА и активированный уголь марки А основной полиэфир НПГА, полученный из неопентилгликоля и азелавво-вой кислоты смесь ПЭЭ с полиэфиром НПГА после сушки цеолитом СаА. [c.52]

    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]

    Комплексонометрический анализ различных сплавов, руд и концентратов. При комплексонометрическом анализе сложных объектов используют обычные приемы химического разделения (осаждение, ионный обмен, экстракция и т. д.) и маскировки (цианидом, фторидом, триэтаноламином, оксикислотами и другими реагентами), но почти все компоненты определяют комплексо-нометрическим титрованием. Например, при анализе сплавов цветных металлов, содержащих медь, свинец, цинк и алюминий (бронзы, латуни и т. д.), медь определяют иодометрически, а свинец и цинк — комплексонометрически после оттитровывания меди. Перед определением свинца цинк маскируют цианидом, алюминий — фторидом и титрование производят в присутствии соли магния. Затем демаскируют цинк, связанный в цианидный комплекс, раствором формалина и титруют ЭДТА. [c.244]

    Применение марганца, технеция и рения и их соединений. Главная область применения марганца — это черная и цветная металлургия (легирующий металл и раскислитель). Малолегированные марганцовистые качественные стали (до 1,5 мае. долей, %, Мп), применяются как конструкционные, пружинные, рессорные и инструментальные стали. Высоколегированные стали, содержащие до 11—14% марганца, обладают большим сопротивлением ударам и износостойкостью и применяются для трущихся деталей (крестовин и стрелок железных дорог, гусениц тракторов и танков, дробильных машин, шаровых мельниц и т. п.). В цветной металлургии широко используются марганцовистые бронзы, латуни, а также сплавы с магнием и алюминием. Манганины (60% марганца, 30% никеля и 10% меди), обладающие высоким электросопротивлением и малым его температурным коэффициентом, широко применяются для изготовления точных элементов сопротивления в электроизмерительных приборах. [c.387]

    Для испытания берется обычная сталь Ст. 3 и латунь Л-62 в образцах размером 25 х 45 мм с отверстием для подвески. Образцы зачищаются наждачной бумагой, обезжириваются пастой из окиси магния, проди шаются дистиллированной водой, высушиваются фильтровальной бумагой и взвешиваются. Затем в каждый эксикатор на стеклянных крючках подвешивается по три образца стали и латуни. В тигель с сульфитом натрия, находящийся в эксикаторе 3, из пипетки приливается избыток серной кислоты. Крышка эксикатора после этого быстро закрывается, чтобы не было потерь выделяющегося сернистого газа. Минимальная продолжительность опыта одни сутки. В случае много-262 [c.262]

    Силоксановые каучуки не требуют предварительной пластикации, довольно легко смешиваются с различными ингредиентами, но не совмещаются со многими каучуками, так как не вулканизуются с помощью серы. Даже в присутствии следов серы, ускорителей и противостарителей вулканизация полностью прекращается. В качестве активных наполнителей применяют белую сажу, двуокись титана, цинковые белила, литопон, окись магния и другие минеральные наполнители. Смеси, содержащие углеродные сажи, не вулканизуются, так как эти сажи препятствуют действию применяемых вулканизующих агентов. Смеси легко шприцуются и каландруются. Они имеют плохую адгезию к латуни, алюминию, но хорошо крепятся к поверхности стали и особенно к стеклу. [c.364]

    Электрохимически хромовое покрытие удаляют с изделий из стали чугуна, латуни, меди, магнии анодной обработкой в щелочном растворе, содержащем едкий натр 100—150 г/л. при 20—30 "С, 1/=4—6 В /а=Зч-10 АУдм , используя стальные катоды Для этой же цели пригоден любой раствор анодно1 о обезжиривания [27]. [c.120]

    Применение магнитных фильтров для удаления загрязнений, содержащих металлы, является весьма перспективным. Магнитные фильтры отделяют стальные и чугунные частицы размерами 0,002—0,025 мм и разделяют смеси, состоящие из магнитных и немагнитных частиц при соотношении не менее 20 1. При этом степень очистки составляет 70 %. Потеря напора в фильтрах при загрязнении обычно не превышает 0,025 МПа. Магнитный фильтр представляет собой антимагнитный корпус с крышкой, в который помещен фильтрующий элемент. Последний состоит из аитимаг нитного стержня, на который надет постоянный магнит в анти магнитном кожухе. Магнит зажат двумя стальными башмаками Фильтрующий элемент представляет собой набор стальных колец соединенных латунными полосами и надетых иа кожух магнита Частицы металла задерживаются в элементе магнитным полем Применение магнитных фильтров оправдано только тогда, когда загрязнения в нефтепродуктах (например, в отработанных маслах) содержат значительное количество металла. За рубежом для очистки масел и смазочно-охлаждающих жидкостей довольно широко применяют магнитные фильтры в комбинации с фильтрами грубой и тонкой очистки. [c.242]


Смотреть страницы где упоминается термин латунь магний: [c.120]    [c.128]    [c.181]    [c.159]    [c.63]    [c.87]    [c.150]    [c.836]    [c.288]    [c.266]    [c.269]    [c.162]    [c.39]    [c.66]    [c.126]    [c.284]   
Коррозия металлов Книга 1,2 (1952) -- [ c.431 , c.439 , c.440 , c.445 , c.450 ]

Коррозия металлов Книга 2 (1952) -- [ c.431 , c.439 , c.440 , c.445 , c.450 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак, действие на алюминий латунь магний и его сплавы медь никель

Атмосферная коррозия алюминия его сплавов вольфрама железа кадмиевых покрытий кадмия латуни магния

Латуни

вольфрам железо золото латунь магний и его сплавы медь

хромомарганцовистой действие на бериллий латунь магний



© 2025 chem21.info Реклама на сайте