Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахара с прямой цепью

    Обычно моносахариды содержат прямую цепь углеродных атомов, однако существуют также моносахариды с разветвленной цепью, так называемые разветвленные сахара. [c.13]

    САХАРА И ДЕЗОКСИСАХАРА С ПРЯМОЙ ЦЕПЬЮ [c.229]

    САХАРА И ДЕЗОКСИСАХАРА С ПРЯМОЙ ЦЕПЬЮ УГЛЕРОДНЫХ АТОМОВ [c.45]

    ТОЛЬКО глюкоза и рамноза обычно встречаются в других гли-козидах. Остатки этих сахаров (до пяти) образуют прямую цепь, которая присоединяется к атому С-3 сердечного агли-кона. Гликозидные связи оказываются всегда в р-конфигура- [c.90]


    В основу номенклатуры сахаров положены тривиальные названия моносахаридов состава С Н2 0 с прямой цепью углеродных атомов ксилоза, рибоза, глюкоза, фруктоза и др. Наименованиям кетоз придается окончание -улоза, например кетоза Сд-пентулоза. Всем моносахарам присуща конфигурационная (оптическая) изомерия, т. е. они существуют в двух энантиомерных формах о и Ь. Принадлежность моносахаридов к О- или ь-ряду определяется по расположению ОН-группы у последнего (считая от альдегидной или кетогруппы) хирального атома углерода. В качестве стандарта сравнения конфигурации асимметрического атома углерода предложено использовать изомер глицеринового альдегида. Названный о-глицериновым альдегидом изомер вращает плоскость поляризованного света вправо, а его зеркальное отражение антипод — ь-глицериновый альдегид — влево  [c.223]

    А. Распространение и структура олигосахаридных цепей О-связанных гликопротеинов. Многие гликопротеины этого класса присутствуют в муцинах. Однако О-гликозидные связи обнаруживаются также в некоторых мембранных и циркулирующих в крови гликопротеинах. Как отмечалось выше, сахаром, прямо присоединяющимся к остатку Ser или Thr, является GalNa (рис. 54.1). Остаток Gal или NeuA обычно присоединяется к GalNA . Структура двух типичных олигосахаридных цепей гликопротеинов этого класса представлена на рис. 54.2. Встречаются также многие варианты таких структур. [c.303]

    Элементарным звеном всех высших углеводов, так же как и низкомолекулярных производных этого класса, являются моносахариды. В типичных случаях их молекулы содержат прямую насыщенную цепь из пяти или шести углеродных атомов, каждый из которых несет гидроксильный заместитель, а один окислен до альдегидной или ке-тонной группы. Таковы, например, альдопентозы 1 (т. е. Сб-сахара с альдегидной группой), альдогексозы 2 (т. е. С -сахара с альдегидной группой), кетогексозы (Св-са-хара с кетогруппой) и др. Кроме наиболее распространенных пентоз и гексоз, существуют еще и С3-, С -, С -, Сд- и даже Сд-моносахариды, называемые соответственно триозами, тетрозами, пептозами, октозами и нонозами. [c.7]

    Необходимо кратко остановиться на изображении циклических формул сахаров. В настоящее время в литературе циклические формы сахаров чаще всего изображают в виде равностороннего шести- или пятиугольника, один из углов которого занимает окисный атом кислорода, а атомы водорода, гидроксильные группы и другие заместители располагаются над и под плоскостью кольца в зависимости от стереохимии сахара. Не всегда само собою разумеющимся является переход от написания циклической формулы сахара, произведенной из фишеровской формулы, к формуле с правильным шестиугольником. Обычно для правильного написания последней следует сделать поворот заместителя на формуле у С(5)В гексозе (илиQ4)B пентозе) и у гликозидного гидроксила так, чтобы связи окисного кислорода находились на одной прямой с основной цепью С—С связей сахара, после чего переписать формулу в виде правильного пяти- или шестиугольника. Приведем несколько примеров. [c.39]


    Известно, что циклодекстрины димеризованы в воде за счет гидрофобных взаимодействий [49, 50], это и упрочняет структуру воды. На основе данных по энтальпиям разбавления водных растворов а-циклодекстрина [51] можно утверждать, что взаимодействие а-ЦД-а-ЦД энергетически более выгодно, чем взаимодействие а-ЦД-вода. При исследовании теплоемкостных характеристик некоторых сахаров и а-, Р - и 7-ЦД в твердом состоянии и водном растворе [52] была обнаружена зависимость молярной теплоемкости С указанных соединений в твердом состоянии от числа остатков глюкозы. Значения для сахаридов с открытой цепью и циклодекстринов лежат на параллельных прямых, отстоящих друг от друга на 125 Дж/(моль К). Такое различие объясняется частичной потерей одной молекулы воды при формировании циклодекстриновых колец и более жесткой структурой кольцеобразных молекул. Наряду с данной зависимостью была построена зависимость парциальной молярной теплоемкости растворенных веществ при бесконечном разбавлении от числа глюкозных единиц. Оказалось, что ее вид совпадает с первой, но разница между прямыми составила 200 ДжДмоль К). Большее различие можно объяснить эффектом неполной сольватации циклодекстринов. Вклад [c.206]

    Из некоторых водорослей и антибиотиков выделены сахара, имеющие не прямую, а разветвленную цепь углеродных атомов, например апиоза  [c.462]

    Транспорт аминокислот через клеточные мембраны осуществляется в основном по механизму вторично-активного транспорта. В этом случае система активного транспорта приводится в действие не путем прямого гидролиза АТФ, а за счет энергии, запасенной в ионных градиентах. Перенос аминокислот внутрь клеток осуществляется чаще всего как симпорт аминокислот и ионов натрия, подобно механизму симпорта сахаров и ионов натрия. Энергия АТФ затрачивается на выкачивание Ка /К -АТФ-азой ионов натрия из клетки, создания электрохимического градиента на мембране, энергия которого опосредованно обеспечивает транспорт аминокислот в клетку. Известен ряд сходных по строению транспортных систем (транслоказ), специфичных к транспорту аминокислот нейтральных аминокислот с небольшой боковой цепью, нейтральных аминокислот с объемным боковым радикалом кислых аминокислот, основных аминокислот, пролина. Эти системы, связывая ионы натрия, индуцируют переход белка-переносчика в состояние с сильно увеличенным сродством к аминокислоте Ка" стремится к транспорту в клетку по градиенту концентрации и одновременно переносит внутрь клетки молекулы аминокислоты. Чем выще градиент Na , тем выше скорость всасывания аминокислот, которые конкурируют друг с другом за соответствующие участки связывания в транслоказе. [c.366]

    При описаиии химических процессов с участием сахара и фосфорной кислоты применяются также условные обозначения поли-нуклеотидных цепей, как это показано иа рисунках 173 и 174 остатки сахара изображаются прямыми линиями, соединенными между собой 2 -, 3 - и 5 -гидроксилы символизируются отрезками, исходящими из прямой. [c.306]

    При окислении 0,05 М раствором перйодата нерастворимого ламинарана (см. стр. 371)— гетерогенного полисахарида бурых водорослей — в течение 40 час при 18° и pH 8 количество выделившегося формальдегида достигает постоянной величины, равной 0,5 моля на один остаток сахара [5], что соответствует данным [16—18] о содержании в нем большого числа (1 -V 3)- 3-в-глюкопиранозильных остатков. В незабуференном растворе метапериодата натрия ламинаридекстрины [олиго-(1 3)-Р-с-глюкопиранозиды] подвергаются переокислению, причем скорость поглощения перйодата прямо пропорциональна степени полимеризации или длине цепи этих олигосахаридов [19]. [c.480]

    Изучение влияния строения сахара на его подвижность на бумаге показало, что значения Rf зависят от числа атомов углерода и их пространственного расположения, а также от степени замещения гидроксильных групп в молекуле сахара [385]. В случае олигосахаридов скорость миграции падает при увеличении числа остатков моносахаридов в цепи. При исследовании олигосахаридов обнаружена линейная зависимость между степенью полимеризации и логарифмом функции а, которая определяется выражением /(1— f) [385], причем наклон прямой, характеризующей эту зависимость, определяется типом моносахарида, входящего в состав олигосахарида, и конфигурацией гликозидной связи. Такое соотношение справедливо для большинства олигосахаридов, за исключением лишь олигогалактуронидов [387], полученных из пектина. [c.60]

    Хорошо известны и широко применяются неионогенные поверхностно-активные вещества, не содержащие полиоксиэтиленовой цепи, а именно сложные эфиры сахаров—маннита и сорбита. Представителями таких веществ являются так называемые спаны. Они производятся, по-видимому, в виде смесей сложных эфиров, в молекулах которых остаток сорбита частично этерифици- рован жирной кислотой и частично дегидратирован еще до этерификации, в результате чего образуются циклические внутренние эфиры моно- и диангид-росорбитов. Эти внутренние эфиры, обычно называемые сорбитанами (или соответственно маннитанами), выделяются в относительно чистом виде и могут образовывать с рядом соединений как сложные, так и простые эфиры [64]. Сложные эфиры сорбитанов можно получать посредством прямой этерификации этих веществ жирными кислотами при высоких температурах [65], либо путем переэтерификации с низшими эфирами жирных кислот (например, ме-тилолеатом), либо при взаимодействии сорбитанов с хлорангидридами жирных кислот [66]. Поскольку сорбиты и сорбитаны содержат несколько гидроксильных групп, возможно получение ди- и полиэфиров [67]. Эти соединения недостаточно растворимы для того, чтобы их можно было применять в качестве поверхностноактивных веществ, и поэтому желательно получать продукты, в которых на каждый остаток сорбитана приходится одна жирная ацильная группа. [c.101]


    По-видимому, наиболее важным открытием из сделанных когда-либо в биологии было установление того факта, что рассмотренный выше или какой-либо другой процесс копирования уже существуюш их белковых цепей вообще не протекает в организме и что информация о последовательности аминокислот в молекулах ферментов хранится в хромосомах и используется (но терминологии, применяющейся в вычислительной технике) для программирования в белоксиитезирующих системах (рибосомах), обеспечивая правильное воспроизведение последовательности аминокислот. Эта программа хранится не в виде аминокислотной последовательности полипептидных цепей и не в какой-либо иной форме, имеющей прямое структурное или химическое сходство с рассматриваемой аминокислотой, а в виде кода, записанного на лентах нуклеиновой кислоты, при этом каждой аминокислоте соответствует определенное, состоящее из трех букв, кодовое слово (кодон), которое по своей химической структуре не имеет ничего общего с данной аминокислотой. Таким образом, последовательность аминокислот в полипептидной цепи фермента закодирована в виде последовательности нуклеотидов в полинуклеотидной цепи нуклеиновой кислоты. Буквы кодона не следует понимать как некие символы, записанные на бумаге, они представлены пуриновыми или пиримидиновыми основаниями. Записывая нуклеотидные последовательности, принято обозначать нуклеотиды первыми буквами их химического названия например, кодон для метионина представляет собой последовательность из трех нуклеотидов— аденина, урацила и гуанина — и записывается AUG. Информация о последовательности аминокислот в белках хранится в хромосомах, точнее, в молекуле дезоксирибонуклеиновой кислоты (ДНК). Последняя отличается от рибонуклеиновой кислоты (РНК) тем, что содержит восстановленный сахар (дезоксирибозу) и метилированные урациловые группы (иногда бывают метилированы и другие основания). [c.6]

    Высокая степень иммунологической специфичности молекул групповых веществ обусловлена генетическим контролем их биосинтеза. Все имеющиеся данные свидетельствуют о том, что специфичность групповых веществ определяется последовательностью сахаров на нередуцирующих концах углеводных цепей. Таким образом, групповые вещества крови — великолепный объект не только для изучения взаимосвязи между структурой углевода и иммунологической специфичностью, но и для выяснения путей, по которым идет образование этих структур под влиянием генов. Иммунологические свойства групповых веществ и их зависимость от структуры изучаются с помощью специальных методов, таких, как торможение реакции гемагглютинации и преципитации простыми сахарами и торможение активности ферментов, участвующих в деградации групповых веществ. Эти методы позволили получить данные относительно природы сахаров, играющих главную роль в специфичности, за несколько лет до их прямого выделения, а также помогли найти подходы к задаче получения фрагментов с различной серологической специфичностью. С помощью непрямых методов было убедительно показано, что a-N-ацетил-в-галактозаминоильный и сс-в-галактозильный остатки определяют соответственно А- и В-специфичности, а а-ь-фукозиль-ные остатки — Н- и Ье -специфичности. Эти данные были подтверждены при установлении строения активных фрагментов, выделенных из продуктов частичного кислотного гидролиза групповых веществ. Выяснение строения многих активных и неактивных фрагментов позволило предположить строение участков углеводных цепей, ответственных за серологическую специфичность А-, В-, Н- и Ье -веществ. [c.212]

    Изучая клеточное дыхание, студенты иногда удивляются, почем химические взаимопревращения в клетке идут таким сложным путем. Казалось бы, вполне можно обойтись без цикла лимонной кислоты и многих звеньев дыхательной цепи и окислять сахара до СО2 и П2О более прямым способом. По, хотя в этом случае ход процессов дыхания было бы легче запомнить, для клетки подобный путь оказался бы катастрофическим. Огромное количество свободной энергии, высвобождаемое при окислении, может эффективно использоваться только мелкими порциями. В сложном процессе окисления участвует много промежуточных продуктов, каждый из которых лишь незначительно отличается от предыдущего. Благодаря этому высвобождаемая энергия дробится на меньшие количества, которые можно эффективно преобразовывать с помощью сопряженных реакций в высокоэнергетические связи молекул АТР и NADH (см. рис. 2-17). [c.446]


Смотреть страницы где упоминается термин Сахара с прямой цепью: [c.328]    [c.9]    [c.256]    [c.141]    [c.84]    [c.114]    [c.30]    [c.327]    [c.543]    [c.182]   
Углеводы успехи в изучении строения и метаболизма (1968) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Сахара и дезоксисахара с прямой цепью углеродных атомов

Сахара с прямой цепью углеродных атомов



© 2025 chem21.info Реклама на сайте