Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантовый

    Основные положения квантовой механики [c.10]

    Квантовый характер излучения и поглощения энергии. Примерно в начале XX в. исследования ряда явлений (излучение раскаленных тел, фотоэффект, атомные спектры) привели к выводу, о энергия распространяется и передается, поглощается и испускается не непрерывно, а дискретно, отдельными порциями — квантами. Энергия системы микрочастиц также может принимать только определенные значения, которые являются кратными числами квантов. Таким образом, энергия этих систем может изменяться лишь скачкообразно или, как говорят, она квантуется. [c.10]


    Квантовые числа. Орбиталь можно однозначно описать с помощью набора целых чисел, называемых квантовыми. Их обозначают п — главное квантовое число, I — орбитальное квантовое число, Ш1 — магнитное квантовое число. [c.14]

Рис. 5. Схема уровней энергии и квантовые переходы электрона атома водорода Рис. 5. Схема уровней энергии и <a href="/info/1686702">квантовые переходы электрона</a> атома водорода
    V Главное квантовое число. Энергетические уровни. Согласно условиям квантования электрон в атоме может находиться лишь в определенных квантовых состояниях, соответствующих определенным значениям его энергии связи с ядром. Так, волновые функции, получаемые решением волнового уравнения для атома водорода, соответствуют только таким энергиям, которые задаются выражением [c.14]

    Радиальное распределение электронной плотности орбиталей. На рис. 8 показано радиальное распределение электронной плотности для S-, р- и -орбиталей атома водорода. Как видно из рисунка, число максимумов на кривой распределения электронной плотности определяется главным квантовым числом. Для s-электронов число максимумов равно значению главного квантового числа, для о-электро-HO J — на единицу меньше, а для -электронов — на две единицы [c.18]

    Вычисление вероятности нахождения электрона в данном месте атома (молекулы) и его энергии — сложная математическая проб-лша. Она решается с помощью волнового уравнения Шредингера. у Волновое уравнение Шредингера. В 1926 г. Эрвин Шредингер предложил уравнение, получившее название волнового уравнения Шредингера, которое в квантовой механике играет такую же роль, какую законы Ньютона играют в классической механике. [c.13]

    Важно установить, равно ли число превращенных при фотохимическом процессе молекул числу поглощенных световых квантов, т. е. необходимо установить величину квантового выхода Q, определяющегося отношением [c.138]

    Квантование энергии, волновой характер движения микрочастиц, принцип неопределенности — все это показывает, что классическая механика совершенно непригодна для описания поведения микрочастиц. Так, состояние электрона в атоме нельзя представить как движение материальной частицы по какой-то орбите. Квантовая механика отказывается от уточнения положения электрона в пространстве она заменяет классическое понятие точного нахождения частицы понятием статистической вероятности нахождения электрона в данной точке пространства или в элементе объема с1У вокруг ядра. [c.12]


    В качестве модели состояния электрона в атоме в квантовой механике принято представление об электронном облаке, плотность соответствующих участков которого пропорциональна вероятности нахождения там электрона. Одна из возможных форм электронного облака в атоме показана на рис. 1. [c.12]

    Орбитальное квантовое число I обычно обозначают буквами в соответствии со схемой  [c.16]

    Прекращение реакции может наступить в результате обрыва цепи, вызываемого прежде всего действием кислорода, который вступает в соединение с алкил-радикалом и с атомом хлора. Так как в технических газах всегда содержится большее или меньшее количество кислорода, обрыв цепи в промышленных условиях наступает относительно быстро. В то время как при использовании химически чистых газов квантовый выход достигает 30 000—40 000, в технических процессах эта величина не превышает 2000. Под квантовым выходом понимается число реакций, вызываемых одним световым квантом до обрыва цепи. [c.113]

    Подведем некоторые итоги сказанному. Состояние электрона в атоме может быть описано с помощью четырех квантовых чисел п, I, П11 и т.,. Они характеризуют спин, энергию электрона, объем и форму пространства, в котором вероятно его пребывание около ядра. При переходе атома из одного квантового состояния в другое, в связи с чем меняются значения квантовых чисел, происходит перестройка электронного облака. При этом атом поглощает или испускает квант энергии. [c.19]

    Совершенно аналогичные цепные реакции протекают и при фотохимическом хлорировании парафиновых углеводородов. По литературным данным [8], квантовый выход при хлорировании -гептана при освещении ультрафиолетовыми лучами равен около 7000. [c.140]

    Преимущество фотохимического хлорирования по сравнению с термическим заключается в том, что при фотохимическом процессе в значительной степени предотвращаются как разложение сырья в результате пиролиза, так и реакции изомеризации. Реакция начинается практически мгновенно устраняется продолжительный индукционный период с накоплением хлора в реакционном объеме. Это может происходить и при жидкофазном хлорировании в подобных случаях реакция начинается бурно с внезапным выделением тепла и хлористого водорода, что в результате обильного пенообразования приводит к уносу продуктов реакции. Недостатком фотохимических процессов являются увеличенные капиталовложения и эксплуатационные расходы и высокая чувствительность к присутствию подавляющих реакцию примесей. Экономические преимущества фотохимического хлорирования объясняются высоким квантовым выходом. Принимают, что в условиях промышленных установок на каждый излученный световой квант вступает в реакцию около 100 молекул хлора. В зависимости от характера исходного углеводорода, концентрации хлора и температуры ртутная лампа мощностью 400 вт активирует протекание реакции 5—15 кг хлора в час. [c.142]

    Е) создании современной теории строения атома особую роль сыграли Эрнест Резерфорд, построивший планетарную модель атома (1911), и Нильс Бор, выдвинувший первую квантовую теорию атома (19П). [c.7]

    Для каждого значения п орбитальное квантовое число I принимает значения, заключенные между О и (и — I)  [c.16]

    Для обозначения состояния электрона главное квантовое число ставят перед символом орбитального квантового числа. Например, 4 означает электрон, у которого = 4 и / = О (облако имеет форму шара) 2р означает электрон, у которого и = 2 и / =1 (облако имеет форму гантели) и т. д. [c.17]

    Переход электрона из одного квантового состояния в другое связан со скачкообразным изменением его энергии. Графически энергию квантовых состояний и квантовые переходы электронов можно изобразить с помощью схемы уровней энергии (рис. 5). На схеме горизонтальные линии проведены на высотах, пропорциональных значениям энергии электрона в атоме, вертикальные указывают на возможные квантовые переходы. [c.14]

    Магнитное квантовое число. Пространственная ориентация орбиталей. Для характеристики пространственного расположения орбиталей (облаков) применяется третье квантовое число /П/, называемое магнитным. Оно имеет следующие значения О, 1, 2, 3, ..., / и определяет значение проекции орбитального момента количества движения на выделенное направление (например, на ось г)  [c.18]

    Число значений магнитного квантового числа зависит от орбитального квантового числа п указывает на число орбиталей с данным значением I. Число орбиталей с данным значением I равно (2/ + 1). [c.18]

    Орбитальное Магнитное квантовое Число орбиталей (облаков) [c.18]

    К V Принцип Паули. В 1925 г. Вольфгангом Паули был высказан принцип в атоме не может быть двух электронов, имеющих одинаковый набор всех четырех квантовых чисел. Иными словами, данными значениями квантовых чисел п, I, П11, Шд может характеризоваться только один электрон. Для любого другого электрона в атоме должно Сыть иным значение хотя бы одного из квантовых чисел. [c.19]


    Считается, что в этой реакции сначала под действием ультрафиолетового света молекулы хлора расщепляются на атомы. Атом хлора отнимает от углеводородной молекулы один атом водорода, причем образуются хлористый водород и алкильный радикал. Алкильный радикал соединяется с двуокисью серы с образованием алкилсульфонового радикала, который реагирует с молекулой хлора, давая сульфохлорид и освобождая атом хлора. Квантовьи т выход ири технологическом сульфохлорировании составляет около 2000. [c.137]

    Фотохимическое хлорирование метана до хлористого метила в жидкой фазе, например, в виде раствора в четыреххлористом углероде, протекает по этому способу значительно хуже. Квантовый выход при хлорировании метана ниже, чем при хлорировании хлористого метилена или хлороформа. При хлорировании метана требуется весьм1а интенсивное облучение, в результате чего получается главным образом [c.146]

    TaKHM образом, принимают, что сначала под влиянием энергии света расщепляются молекулы хлора на атомы. Атомы хлора отрывают от молекулы углеводорода атом водорода и образуют алкильный радикал и молекулу хлористого водорода. Алкильный радикал тут же реагирует с молекулой двуокиси серы, превращаясь в радикал алкил-сульфона, который в свою очередь сейчас же реагирует с молекулой хлора, превращаясь в сульфохлорид, при этом снова образуется свободный атом хлора. В результате образования этого атома хлора начи- ается следующий цикл реакций, теоретически без затраты энергии света. Квантовый выход, который в лабораторных условиях составляет приблизительно 30000—40000, в производственных условиях из-за невозможности применения чистых исходных материалов достигает всего лишь приблизительно 2000—3000. Как и при хлорировании, здесь также может вступить в реакцию один алкильный радикал с молекулой хлора, образуя молекулы алкилхлорида и атом хлора R + la- R l + r (реакция хлорирования в углеродной цепи). Но это, как мы уже знаем, бывает только в редких случаях. Алкильные радикалы реагируют с SO2 (по Шумахеру и Штауффу) на две порядковые величины быстрее, чем с одной молекулой хлора [11]. [c.366]

    Фактически почти всегда можно установить, что по мере развития реакции сульфохлорирования все легче наступает обрыв цепи, а это значит, что квантовый выход становится все меньше, или, другими словами, что количество световой энергии, потребное для поддержания реакции, постепенно возрастает. Скорость реакции хлорирования парафина заметно уменьшается, если у каждого атома углерода замещается только 1 атомом водорода. Скорость реакции при сульфохлорировании (по Крепелину с сотрудниками) падает, когда каждый второй или третий атом углерода уже замещен [7]. [c.367]

    О механизме реакции сульфохлорирования имеются также фотохимические исследования Шумахера и Штауффа [И]. Они изучали реацию взаимодействия н-гептана, двуокиси серы и хлора в растворе четыреххлористого углерода и установили, что квантовый выход при 25° составляет примерно 35 000. В результате систематических исследований было найдено, что скорость образования гептилсульфохлорида пропорциональна корню из интенсивности света и первой степени концентрации гептана. Что же касается влияния концентрации двуокиси серы, то после достижения известной небольшой концентрации ее скорость образования гептансульфохлорида не зависит от дальнейшего увеличения концентрации двуокиси серы. [c.367]

    При реакции сульфохлори рования расход световой энергии зависит от применяемого углеводородного сырья. При работе с чистым гидрированным когазином этот расход относительно мал (на 1 моль сульфсхлорида примерно 0,015 кет), так как квантовый выход даже и при промышленном проведении реакции все еще составляет 4—5000. [c.401]

    На основании многочисленных опытов в промышленном масштабе Ортнер оценивает квантовый выход при этом методе в 7—8. [c.491]

    Однако квантовые выходы были во всех случаях меньше единицы. Лучше всего эта реакция протекает с высшими парафиновыми углеводородами. Третичные атомы водорода реагируют наиболее легко, первичные наиболее трудно. При реакции двуокиси серы с пропаном и н-бутаном установлено образование двух изомерных сульфиновых кислот, причем в случае бутана преимущественно получается сульфи-новая кислота с группой — ЗОаН у вторичного атома углерода. Олефины вступают в эту реакцию гораздо труднее и тормозят превращение насыщенных углеводородов. [c.505]

    Недавно было опубликовано замечание к реферату доклада Суйяра и Юнгерса о фотохимическом и каталитическом хлорировании углеводородов [61] Правильный выбор активируюш,их средств может до известной степени определить место вступления хлора в молекулу . Это дает возлюжность предположить, что при хлорировании парафиновых углеводородов может быть удастся направлять галоид в заданное место. В оригинальной литературе [62] встречается упоминание о давно известном факте, что при хлорировании этилбензола хлор преимущественно (на 80%) становится в/ -положение или что свет способствует замещению в боковой цепи алкилбензолов. Дальше там написано буквально следующее При фотохимическом хлорировании чистых парафиновых углеводородов можно также установить различие между первичными, вторичными и третичными атомами водорода, используя дезактивирующее действие жирных кислот и, возможно, других соединени иа квантовый выход . Эти замечания, сделанные совсем недавно, еще раз указывают на неясные представления о процессах замещения парафиновых углеводородов. [c.559]

    Стеклянные электроды. Стеклянные электроды, обратимые но отношению к ионам водорсда, были первыми ионоселективными электродами. Они изобретены в начале XX в. Кремером, Габером н Клеменсиевичем. Квантово-механический вариант теории стек, ]янного электрода предложил М. Дол (1934), а ее термодинамический вариант, получивший наибольшее распространение и ставший основой последующего развития теории ионоселективных электродов, — Б. П. Никольский (1936). Дальнейший прогресс в этой области связан с трудами Эйгенмана, Шульца, Измайлова, Росса, Пупгора и ряда других. [c.173]

    Современная теория строения атома основана на законах, описывающих движение микрочастиц (микрообъектов). Поскольку массы и размеры мри<рочастиц чрезвычайно малы по сравнению с массами и размерами макроскопических тел, свойства и закономерности движения отдельной микрочастицы качественно от-JП[чaют я от свойств и закономерностей движения макроскопического тела, уже давно изученных классической физикой. В 20-е годы XX в, возник новый раздел физики, описывающий движение и взаимодей-С1ВИЯ микрочастиц, — квантовая (или волновая) механика. Она основывается на представлении о квантовании энергии, волновом характере движения микрочастиц н вероятностном (статистическом) методе описания микрообъектов. [c.10]

    Квантовое состояние атома с наименьшей энергией 1 называется нормальным или основным. Остальные квантовые состояния с более высокими уровнями энергии Е2, з. 4. называются возбужденными. Электрон в основном состоянии связан с ядром наиболее прочно. Когда же атом находится в возбужденном состоянии, связь электрона с ядро.м ослабевает вплВть до отрыва электрона от атома при оо. [c.15]

    V Орбитальное квантовое число.уФормы орбиталей. Для характеристики формы орбитали, а следовательно, и формы электронного облака вводится орбитальное или азимутальное квантовое число I, которое имеет значения О, 1,2, 3,. .., [п — 1). Оно отвечает значению орбитального момента количества движения электрона [c.16]


Смотреть страницы где упоминается термин Квантовый : [c.368]    [c.34]    [c.49]    [c.371]    [c.371]    [c.12]    [c.14]    [c.16]    [c.16]    [c.16]    [c.18]    [c.19]    [c.19]    [c.19]   
Руководство по физической химии (1988) -- [ c.0 ]




ПОИСК







© 2022 chem21.info Реклама на сайте