Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки, связанные с микротрубочками

Рис. 13-51. Кинетохоры. В метафазной хромосоме (А), окрашенной аутоантителами человека, реагирующими со специфическими белками кинетохора, выявляются два кинетохора, каждый из которых связан со своей хроматидой (S). На электронной микрофотографии В-анафазная хроматида с микротрубочками, прикрепленными к кинетохору Хотя большинство кинетохоров трехслойные, тот, который показан здесь (из зеленой водоросли), имеет необычно сложную структуру с дополнительными слоями. (АиБс любезного разрешения Bill Brinkley С - из J.D. Рис. 13-51. Кинетохоры. В <a href="/info/33627">метафазной хромосоме</a> (А), окрашенной аутоантителами человека, реагирующими со <a href="/info/490203">специфическими белками</a> кинетохора, выявляются два кинетохора, каждый из которых связан со своей хроматидой (S). На <a href="/info/73091">электронной микрофотографии</a> В-анафазная хроматида с микротрубочками, прикрепленными к кинетохору Хотя большинство кинетохоров трехслойные, тот, который показан здесь (из <a href="/info/98897">зеленой водоросли</a>), имеет необычно <a href="/info/56184">сложную структуру</a> с дополнительными слоями. (АиБс любезного разрешения Bill Brinkley С - из J.D.

    Центры организации микротрубочек белки, связанные с микротрубочками [c.105]

    Помимо этих трех основных типов белковых филаментов цитоскелет включает также множество различных вспомогательных белков, которые либо связывают филаменты друг с другом или с другими клеточными структурами (например, с плазматической мембраной), либо влияют на скорость и степень полимеризации филаментов. Специфические комплексы вспомогательных белков, взаимодействуя с белковыми филаментами, обеспечивают процессы движения. Два наиболее изученных примера-мышечное сокращение, за которое ответственны актиновые филаменты, и подвижность ресничек и жгутиков, связанная с функцией микротрубочек. Хотя в этих видах движения участвуют разные наборы белков, в обоих случаях движение связано с гидролизом АТФ и основано на одном принципе-на скольжении белковых нитей относительно друг друга. [c.75]

    Биения ресничек обусловлены изгибанием их осевой структуры, так называемой аксонемы. Это сложный комплекс микротрубочек и связанных с ними белков. Микротрубочки-главный структурный компонент аксонемы. Это полые белковые цилиндры с внешним диаметром 25 нм, расположенные весьма характерным образом. Открытие этой системы явилось одним из самых интересных результатов ранних электронно-микроскопических исследований. [c.89]

    Различие заключается лишь в том, что мыльная пленка образуется на границе раздела с воздухом, а липидный бислой - в воде. Не удивительно поэтому, что часто липидные везикулы -липосомы - широко используются с целью моделирования мембранных свойств живой клетки. В настоящее время выяснено, что механическая прочность живой клетки наряду с липидным бислоем обеспечивается системой белковых микротрубочек и сетью мембранных белков. Однако это не умаляет роли самих липидных пор и связанного с ними механизма дестабилизации мембран, особенно в тех случаях, когда система микротрубочек отсутствует или не развита. [c.49]

    Клетки млекопитающих представляют собой комплекс различных молекул, из которых наиболее простой является вода, В водном окружении содержатся компоненты всевозможных размеров от маленьких ионов до огромных полимеров, комплекс ДНК — хроматин, микротрубочки, микрофиламенты, белки различной формы и размеров, а также мембраны, содержащие липиды и связанные с ними белки, являющиеся частью этих внутриклеточных систем. Во внутриклеточной водной среде все компоненты взаимодействуют друг с другом. [c.301]


    Мембранные белки могут также быть либо иммобилизованы, либо ограничены в подвижности в связи с присутствием связанных с внутренней поверхностью мембраны особых структурных образований — микрофиламентов и микротрубочек (см. ниже). Обнаружение этой роли цитоскелетных структур в латеральной подвижности молекул в мембране привело к модификации жидко-мозаичной модели мембранной структуры. Одна из таких моделей показана на рис. 11.7. [c.373]

    Две основные группы белков, ассоциированных с микротрубочками (БАМ), были первоначально идентифицированы по способности не отделяться от тубулина в циклах полимеризации — деполимеризации или оставаться связанным с этим белком при его очистке другими методами. Заметим, что способность оставаться постоянно связанным с тубулином нельзя считать адекват- [c.19]

    Г0 к внешншу миру, так что свет, фокусируемый хрусталиком, должен пройти через них по пути к фоторецепторным клеткам (рис. 16-8). Последние лежат так, что концы их, юспринимающие свет,-наружные сегл<гмты-частично погружены в пигментный эпителий. В соответствии со своей формой фоторецепторы делятся на палочки и колбочки. Они содержат различные светочувствительные комплексы белка со зрительным пигментам. Палочки особенно чувствительны при малой освещенности, тогда как колбочки, представленные тремя разновидностями-каждая для своего участка спектра, служат для восприятия цвета. Наружный сегмент фоторецептора каждого типа-это, по-видимому, видоизмененная ресничка в нем мы находим характерное для ресничек расположение микротрубочек в участке, связывающем наружный сегмент с остальной клеткой (рис. 16-9). Основная же часть наружного сегмента почти целиком заполнена плотно уложенными мембранами, в которые погружены светочувствительные белки, связанные со зрительным пигментом. Протиюположные концы фоторецепторных клеток образуют синаптические контакты со вставочными нейронами сетчатки. [c.141]

    Новые микротрубочки отрастают в случайных направлениях от двух центросом (представленных кружками), к которым они прикреплены своими минус-концами. Их плюс-концы динамически нестабильны и резко переходят от равномерного роста к быстрому укорочению, при котором часто деполимеризуется вся микротрубочка (разд. 11.4.3). Когда две микротрубочки от противоположных центросом взаимодействуют в зоне их перекрывания, белки, связанные с микротрубочками, сшивают их друг с другом (показано серым цветомприкрывая и стабилизируя таким образом [c.444]

    В аксоне в наибольших количествах содержатся белки, образующие микротрубочки, нейрофиламенты (класс промежуточных филаментов) и актиновые филаменты (рис. 19-5, В). Белки цитоскелета доставляются из тела клетки и движутся по аксопу со скоростью от 1 до 5 мм в сутки. Это медленный аксонный транснорт (подобный вид транспорта имеется и в дендритах, содержащих несколько иной набор белков, связанных с микротрубочками - см. разд. 11.4.7). Другие белки цитозоля, включая многие ферменты, тоже переносятся с помощью медленного аксонного транспорта, механизм которого не ясен. [c.292]

    Известно, что в мейозе и в митозе хромосомы упорядоченно расходятся по дочерним клеткам с помощью аппарата веретена, микротрубочки которого обеспечивают растягивание дочерних хромосом или гомологов к разным полюсам. Микротрубочки веретена прикрепляются к специальному участку хромосомы — кинетохору. Это белковый комплекс, который собирается на специализированной последовательности хромосомной Ц.НК — центромере. Молекулярные основы функционирования кинетохора пока не ясны. Методы молекулярного клонирования позволили выделить центромеры хромосом дрожжей. Вставление этих последовательностей в способные реплицироваться молекулы ДНК обеспечивает правильную сегрегацию последних в митозе у дрожжей. В случае дрожжей-сахаромицетов центромеры оказались сравнительно короткими (100—200 п. н.) сегментами ДНК. Центромеры делящихся дрожжей значительно больше (несколько тысяч п. н.) и, видимо, напоминают своим строением центромеры высших эукариот. Механизм упорядоченной сегрегации хромосом эукариот станет понятен, когда выяснится, как связанные с центромерой кинетохорные белки взаимодействуют с аппаратом веретена. [c.72]

    Процесс клеточного деления состоит из деления ядра (митоз) и следующего за ним деления цитоплазмы (цитокинез). Митоз характеризуется образованием высокоупорядоченного биполярного веретена, состоящего из микротрубочек и связанных с ними белков микротрубочки организуются двумя митотическими центрами на противоположных полюсах веретена. Хромосомы конденсируются во время профазы. Затем появляются кинетохорные нити они начинают взаимодействовать с полюсными нитя.ыи веретена, после того как ядерная оболочка растворяется в прометафазе. В метафазе в результате действия сил, тянущих кинетохорные нити к полюсаы, хромосомы выстрой- [c.196]

    Мембранные белки наряду с липидами играют важную структурную роль, кроме этого они ответственны за выполнение подавляющего большинства специализир. ф-ций отдельных мембран. Они служат катализаторами протекающих в мембранах и на их пов-сти р-ций (см., напр.. Дыхание), участвуют в рецепции гормональных и антигенных сигналов и т. п. (см., напр., Аденилатциклаза), выполняют транспортные ф-ции, обеспечивают пиноцитоз (захват клеточной пов-стью и поглощение клеткой жидкости), хемотаксис (перемещение клетки, обусловленное градиентом концентраций к.-л. в-ва в среде) и т.п. Мн. из периферич. белков-компоненты цитоскелета (совокупность филамен-тов и микротрубочек цитоплазмы) и связанных с ним сократит, элементов, к-рые обусловливают форму клеткн и ее движение. [c.29]


    Микротрубочки состоят из молекул тубулина, каждая из которых представляет собой гетеродимер, образованный двумя прочно связанными глобулярными субъединицами. Эти субъединицы - родственные белки (около 450 аминокислот в каждом), получившие название а- и Р-тубули нов. Хотя тубулин присутствует практически во всех клетках эукариот, главным источником его для биохимических исследований служит головной мозг позвоночных 10-20% растворимого белка, экстрагируемого из мозга большинством методов, составляет тубулин и это неудивительно, так как отражает высокое содержание микротрубочек в длинных аксонах и в дендритах нервных клеток. [c.294]

    Актиновые филаменты, микротрубочки, промежуточные филаменты и связанные с ними белки способны к самопроизвольной сборке в сложную сеть белковых нитей, структурирующих цитоплазму. Цитоскелет играет ведущую роль в определении формы и полярности клеток, а также в их подвижности. Когда. животная клетка движется, пучок актиновых филаментов периодически выталкивает наружу ламеллоподии и микрошипы на одной из сторон клетки (переднем крае) и растягивает клеточный кортекс, поляризуя клетку, что помогает ей продвигаться вперед. Эта полярность поодерживается с помощью микротрубочек или актиновых филаментов, которые направляют поток материала плазматической мембраны к переднему краю клетки. [c.332]

    Кто-то сказал, что хромосомы в митозе напоминают покойника на похоронах они дают повод для действий, но не принимают в них активного участия. Активная роль принадлежит двум особым цитоскелетным структурам, которые временно образуются в М-фазе. Первым появляется двухполюсное митотическое веретено, состоящее из микротрубочек и связанных с ними белков. Сначала оно выстраивает реплицированные хромосомы в плоскости деления клетки затем каждая хромосома разделяется на две дочерние, которые разводятся нитями веретена к противоположным сторонам клетки. Вторая цитоскелетная структура, необходимая в М-фазе животных клеток, - это сократимое кольцо из актиновых и миозиновых филаментов. появляюшееся чуть позже под плазматической мембраной. Это кольцо втягивает мембрану внутрь, разделяя клетку на две, и тем самым обеспечивает, что каждая дочерняя клетка получит не только один полный набор хромосом, но и половину содержимого цитоплазмы и органелл родительской клетки. Эти две цитоскелетные структуры содержат разные наборы белков и в некоторых специализированных клетках могут формироваться независимо друг от друга. Однако их образование обычно тесно скоординировано, [c.438]

Рис. 13-56. Упрощенная схема мятотического веретена в метафазе. Веретено строится из двух полуверетен (показанных черным и красным цветом), каждое из которых включает кинетохоры, полюсные микротрубочки и микротрубочки звезды. Полярность микротрубочек показана направлением стрелок. Полюсные нити веретена, отходящие от его противоположных полюсов, имеют зону перекрывания (изображена серым цветом), где связанные с микротрубочками белки могут сшивать их. Обратите внимание, что в этой зоне микротрубочки антипараллельны. Рис. 13-56. <a href="/info/1472997">Упрощенная схема</a> мятотического веретена в метафазе. Веретено строится из <a href="/info/1696521">двух</a> полуверетен (показанных черным и <a href="/info/1011214">красным цветом</a>), каждое из которых включает кинетохоры, <a href="/info/510004">полюсные микротрубочки</a> и микротрубочки звезды. <a href="/info/510008">Полярность микротрубочек</a> показана направлением стрелок. Полюсные <a href="/info/1088934">нити веретена</a>, отходящие от его противоположных полюсов, имеют <a href="/info/829911">зону перекрывания</a> (изображена <a href="/info/662902">серым цветом</a>), где связанные с микротрубочками белки могут сшивать их. Обратите внимание, что в этой зоне микротрубочки антипараллельны.
    По-видимому, направляющий механизм зависит от перестройки цитоскелета цитотоксической клетки в результате специфического контакта с поверхностью клетки-мишеии. Если цитотоксическую Т-клетку во время ее взаимодействия с атакуемой мишеиью пометить антителами к тубулину, то можно увидеть, что ее центросома ориентирована в точку контакта с клеткой-мишенью (рис. 18-47). Кроме того, если клетку пометить антителами к талину - белку, участвующему, видимо, в соединении рецепторов клеточной поверхности с кортикальными актиновыми филаментами (разд. 11.2.8). то окажется, что талин сконцентрирован в кортексе цитотоксической клетки в месте контакта. Имеются данные в пользу того, что агрегация Т-клеточиых рецепторов в участке контакта приводит к локальному талин-зависимому скоплению актиновых филаментов затем механизм, зависимый от микротрубочек, ориеитирует центросому и связанный с нею аппарат Гольджи к участку контакта, направляя воздействие убивающего аппарата на клетку-мишень. Аналогичную поляризацию цитоскелета можно наблюдать и при функциональном взаимодействии Т-хелпера с клеткой, которой он помогает . [c.263]

Рис. 20-51. Простая схема, объясняющая каким образом ориентация микротрубочек в кортикальном слое может определять ориентацию новообразованных микрофибрилл. Крупные целлюлозосинтазные комплексы представляют собой составную часть белков мембраны и осуществляют сборку микрофибрилл на наружной поверхности плазматической мембраны В связи с тем что дистальные концы жестких микрофибрилл входят в состав стенки, их элонгация на проксимальном конце вызывает проталкивание синтазного комплекса вдоль плоскости мембраны. Поскольку микротрубочки прикреплены к плазматической мембране таким образом, что весь комплекс оказывается связанным только с некоторыми каналами мембраны, ориентация микро-трубочек может определять ось, вдоль которой откладываются микрофибриллы. Рис. 20-51. <a href="/info/69155">Простая схема</a>, объясняющая каким образом ориентация микротрубочек в <a href="/info/509769">кортикальном слое</a> может <a href="/info/1715038">определять ориентацию</a> новообразованных микрофибрилл. Крупные целлюлозосинтазные комплексы представляют <a href="/info/1795776">собой</a> <a href="/info/614000">составную часть белков</a> мембраны и осуществляют сборку микрофибрилл на <a href="/info/93821">наружной поверхности</a> <a href="/info/101065">плазматической мембраны</a> В связи с тем что дистальные концы жестких микрофибрилл входят в <a href="/info/1046776">состав стенки</a>, их элонгация на проксимальном конце вызывает проталкивание <a href="/info/1350336">синтазного комплекса</a> вдоль плоскости мембраны. Поскольку микротрубочки прикреплены к плазматической мембране <a href="/info/461013">таким образом</a>, что весь комплекс оказывается связанным только с некоторыми каналами мембраны, ориентация микро-трубочек может определять ось, вдоль которой откладываются микрофибриллы.
    В основании жгутиков и ресничек эукариотических клеток расположена структура, называемая базальным телом она идентична центриоле и функционирует как центр формирования девятипарной структуры микротрубочек в жгутиках и ресничках. Эти органеллы специализированы для движения. Каждый член пары (дублета) имеет со своим партнером общую стенку из трех протофиламентов пары соединены между собой гибким белком, нексином. Движение осуществляется путем скольжения дублетов относительно друг друга, что вызывает волнообразные изгибы ресничек. С одним из дублетов ресничек связан большой белок динеин, обладающий АТРазной активностью, которая необходима для скольжения пар микротрубочек. [c.345]

    В мозге кальцинейрин локализован в основном в постсинаптических мембранах и тесно связан с микротрубочками дендритов, что предполагает его участие в транссинаптической передаче и функционировании микротрубочек. Основными субстратами кальцинейрина в нервной ткани являются белки ВАКРР-32, О-субстрат и Р-субъединица II типа протеинкиназы А. [c.363]

    Таким образом, состояние цитоскелета нервньгх клеток определяется как цАМФ-зависимым фосфорилированием его компонентов, так и Са-зависимым дефосфорилированием (как упоминалось, в нейронах кальцинейрин тесно связан с микротрубочками) степень фосфорилирования белков цитоскелета, в свою очередь, может регулировать их избирательную чувствительность к Са-зависимой и Са-независимой протеиназной атаке. Протеинфосфатазы ифают весьма важную роль в функционировании нервной ткани. Так, наряду с протеинфосфатазами [c.365]

    Интегральные белковые глобулы располагаются в фосфоли-пидных слоях мембран ориентированно. Эта ориентация определяется особенностями гидрофобной поверхности каждого белка, локализацией и свойствами его гидрофильных участков. Определенные участки липопротеиновых глобул (участки узнавания) служат для самосборки полиэнзимных мембранных комплексов. На положение белков в мембране оказывают влияние состав фосфолипидов, прочно связанных с глобулами, состояние сврбодных фосфолипидов двойного слоя, а также величина элект статического заряда мембраны. Функциональная активность мембран и изменения мембранного потенциала сопровождаются всплыванием или погружением субъединиц, их латеральными перемещениями. Предполагается, что такое перемещение белков в мембране может быть ограничено их связью с микрофиламентами и микротрубочками. [c.15]

    Скорость сборки зависит также от концентрации свободных мономеров тубулина. В контроле сборки микротрубочек участвуют связанные с поверхностью микротрубочек белки. Сборка осушествляется в два этапа. Вначале собирается затравка (ядро), а затем микротрубочка растет путем сборки субъеди-ниц. Сушествует критическая концентрация мономеров тубулина, превышение которой индуцирует сборку микротрубочек. [c.321]

    Строение центромер. У млекопитающих центромеры имеют сложную дискообразную структуру, называемую кинетохором. С каждой стороны хромосомы располагается по одному кинетохорному диску. Во время митоза микротрубочки фибрилл веретена прикрепляются непосредственно к плотному наружному слою кинетохора, связанному с петлями хроматина (рис. 9.48). Кинетохоры всех млекопитающих, по-видимому, сходны по своей структуре, поскольку все они образуют комплексы со специфическими антителами из сыворотки больных, страдающих редким аутоиммунным заболеванием-системной склеродермой. С антителами взаимодействуют только кинетохоры митотических клеток, однако соответствующие комплексы образуются и в специфических участках интерфазных хромосом. Антитела не связываются с микротрубочками или с другими прикрепленными к ним белками. [c.209]

    Биение реснички обусловлено изгибанием ее осевой структуры - так называемой аксонемы. Это сложный комплекс микротрубочек и связанных с ними белков. Микротрубочки обычно представляют собой полые белковые цилиндры с наружным диаметром 25 нм (см. ршже). В ак со номе они видоизменены и расположены весьма характерным образом. Открытие этой системы явилось одним из самых впечатляющих результатов ранних электронно-микроскопических исследований девять сдвоенных трубочек расположены по окружности, в центре которой находятся две одиночные микротрубочки (рис. 11-51). Такая структура типа 9 + 2 характерна для ресничек и жгутиков почти всех эукариотических организмов, от простейших до человека. Микротрубочки тянутся [c.293]


Смотреть страницы где упоминается термин Белки, связанные с микротрубочками: [c.311]    [c.444]    [c.157]    [c.240]    [c.293]    [c.322]    [c.442]    [c.446]    [c.455]    [c.465]    [c.130]    [c.345]    [c.345]    [c.215]    [c.28]    [c.36]    [c.384]    [c.45]    [c.211]   
Нейрохимия Основы и принципы (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Центры организации микротрубочек белки, связанные с микротрубочками



© 2025 chem21.info Реклама на сайте