Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация в масс-спектрометрии электронный захват

    Впервые необходимость учета распределения электронов по энергиям возникла при определении потенциалов появления (ПП) положительных ионов при столкновениях электронов с атомами и молекулами (конец 20-х — начало 30-х годов). С тех пор причины разброса по энергии электронов в ионном источнике, воздействие различных факторов на энергию электронов в условиях масс-спектрометрического эксперимента разбирались неоднократно в многочисленных оригинальных статьях и монографиях [52, 61—66]. Поскольку в процессе изучения образования отрицательных ионов резонансным захватом электронов распределение электронов по энергиям является одной из важнейших характеристик экспериментальных устройств, кратко рассмотрим факторы, влияющие на энергию электронов в камере ионизации масс-спектрометра. Во избежание недоразумений отметим, что напряжение, ускоряющее электроны, складывается из подаваемого [c.19]


    Ионизация по схеме (а) с отщеплением одного электрона является наиболее вероятным процессом, составляющим основу большинства обычных методик масс-спектрометрического анализа органических соединений. Образование двухзарядных положительных ионов [схема (б)] для большинства соединений маловероятно. В масс-спектре вследствие заряда 2 они регистрируются с массовым числом т/2 и, таким образом, легко распознаются. Для интерпретации спектров они не имеют значения. Вероятность присоединения электрона с образованием отрицательного иона[ схема (в)] также мала и составляет около 0,1%. При обычных способах работы отрицательные ионы становятся неразличимыми. В последние годы на основе таких отрицательных ионов была разработана масс-спектрометрия электронного захвата [1121, являющаяся особым методом с ограниченной сферой применения. [c.276]

    Предел обнаружения масс-спектрометра имеет такой же порядок, как и других применяемых в газовой хроматографии детекторов (до г/с), но в специальных режимах работы он может быть значительно понижен (до г/с) . Линейный диапазон масс-спектрометра как детектора зависит от способа ионизации и может достигать 2—4 порядков, что меньше, чем у ионизационно-пламенного детектора, но значительно больше, чем, например, у детектора электронного захвата. В некоторых случаях хромато-масс-спектрометры после предварительной градуировки одним из известных способов используют для количественных определений, но основное их назначение — качественный анализ неизвестных компонентов анализируемых образцов, Главная сложность количественного анализа на таких приборах — необходимость контроля и обеспечения постоянства гораздо большего числа рабочих параметров, чем на обычных хроматографах. На практике для получения количественных данных значительно проще провести параллельный анализ однотипного образца на хроматографе с ионизационно-пламенным детектором. [c.199]

    Иногда при химической ионизации целесообразно использовать смеси различных газов. Добавки незначительных количеств кислорода или оксидов азота (N0, N20) к метану позволяют резко увеличить чувствительность масс-спектрометра в режиме детектирования отрицательных ионов. Это связано с образованием в такой смеси относительно устойчивых ионов О в высоких концентрациях, взаимодействующих далее с молекулами органических соединений по схеме (2.3) [31, 32]. Такой же эффект резкого повышения чувствительности отмечался при введении следов оксида азота (П) в инертный газ, подающийся в хроматографические детекторы по захвату электронов, принцип работы которых сходен с условиями химической ионизации [33]. [c.27]


    Масс-спектрометрия отрицательных ионов диссоациативного захвата электронов молекулами требует единственной стандартизации эксперимента — создания в ионном источнике условий, исключающих появление отрицательных ионов за счет других процессов (поверхностная ионизация, перезарядка и т. д.), кроме резонансных процессов образования ионов. Такая стандартизация (ничего общего не имеющая со стандартизацией экспериментальных устройств), не ограничивает возможность совершенствования аппаратуры, и, главное, любой масс-спектр отрицательных ионов в принципе не зависит от преходящих факторов технического оснащения эксперимента, так как отражает только физические свойства молекулы, проявляющиеся в ее взаимодействии с электроном. Практически, конечно, дискриминация но массам в ионном источнике и ряд других мешающих факторов искажают экспериментально получаемые относительные вероятности элементарных нроцессов, но эти искажения (неизбежные при любом эксперименте) являются преходящими и будут уменьшаться с прогрессом техники эксперимента. [c.136]

    Сродство к электрону определяется как энергия, выделяющаяся при захвате электрона (с кинетической энергией, равной нулю) газообразным веществом. Очевидно, что сродство к электрону по величине равно энергии ионизации образующегося вещества. Таким образом, в табл. 6 приведены величины сродства к электрону для положительных ионов элементов. Образование отрицательных ионов при присоединении электронов к нейтральным атомам в общем случае не удается исследовать с помощью обычных спектроскопических методов. Значения сродства к электрону находят либо путем анализа энергетического цикла, одной из стадий которого является присоединение электронов, либо при непосредственном исследовании захвата электронов с нагретых нитей. В последнем методе определяют, например с помощью масс-спектрометра, число нейтральных атомов, отрицательных ионов и электронов. Отсюда можно найти стандартную свободную энергию для равновесия [c.39]

    Признавая определенный смысл и значение этих работ, а также успехи практического применения масс-спектров отрицательных ионов, полученных техникой традиционной масс-спектрометрии, нельзя не указать, что неоднозначность процессов, приводящих к образованию отрицательных ионов в этих работах, снижает теоретическое значение получаемых результатов и, являясь препятствием для правильного истолкования масс-спектров, затрудняет их практическое использование. Отрицательные ионы в названных выше работах образуются в результате наложения в основном двух процессов — диссоциативного захвата электронов молекулами и диссоциации молекул на ионную пару АВ + е->А" + В+-)-е. Диссоциативный захват происходит при встрече молекул с электронами, потерявшими часть своей энергии нри различного рода столкновениях (в том числе и столкновениях со стенками ионного источника), и электронами вторичной электронной эмиссии. Относительный вклад каждого их этих двух процессов в общий ток отрицательных ионов зависит от конструкции камеры ионизации, ее материала, т. е. от условий эксперимента, трудно поддающихся стандартизации. Отсюда — плохая воспроизводимость такого рода масс-спектров отрицательных ионов. [c.135]

    Фокс (Fox R. E.). Я хотел бы отметить здесь, что масс-спектрометром мы в действительности не измеряем полное число образующихся попов. Для такого измерения необходима камера полной ионизации. Масс-спектрометр измеряет среднее относительное поперечное сеченгге, величина которого равна интегралу произведения функции зависимости вероятности захвата от энергии и функции распределения электронов по энергиям. В действительности нам необходимы данные двух типов во-первых, энергетическая зависимость процесса захвата электрона при использовании моноэнергетических электронов и, во-вторых, результаты измерения распределения электронов по энергиям в разряде. [c.465]

    Разряды низкого давления используют в качестве ионных источников в МС для проводящих твердых проб благодаря их простоте и эффективной ионизации. Их широко применяли до внедрения искрового источника. Вслед за использованием тлеющего разряда в атомно-эмиссионной спектрометрии, где наблюдали интенсивное испускание ионов, в начале 1970-х вновь возник интерес к применению этого источника в МС [8.5-9-8.5-13]. Масс-спектрометрия с тлеющим разрядом (ТРМС) имеет ряд уникальных характеристик, что можно видеть и в атомно-эмиссионной спектрометрии (разд. 8.1). Пробоподготовка сведена к минимуму, ТР работает при пониженном давлении (0,1-10 мм рт. ст.), атомизация происходит за счет распыления поверхности, а ионизация — главным образом за счет электронного удара и пеннинговской ионизации из метастабильных уровней инертного газа —сосредоточена в области свечения (рис. 8.5-2). Разрядный газ — это обычно аргон высокой чистоты, но аргон можно заменить другим инертным газом, например Ne. Интерфейс с МС располагают очень близко к области свечения, чтобы избежать захвата молекулярных ионов. Подобно ИСП-МС используют двухступенчатую дифференциальную систему откачки. Требуется также ионная оптика, особенно для уменьшения разброса энергии ионов. Настройка ионной оптики имеет решающее значение для экстракции и прохождения ионов. Параметры ТР, используемые для оптимизации ионизации, включают природу и давление газа, напряжение и ток разряда. В некоторых последних модификациях ячейку охлаждают жидким [c.137]


    Очевидно, что методика идентификации при помощи ГХ-МС или прямого ввода пробы и ионизации электронным ударом не всегда приводит к успеху. В принципе можно сказать, что ее применение ограничено веществами, имеющими значительную плотность паров (летучесть) и термическую стабильность. В этом отношении прямой ввод пробы имеет более широкий диапазон приложений, чем ГХ-МС. Область применения ГХ-МС может быть расширена за счет дериватизации компонентов, увеличивающей их летучесть, что часто находит применение в традиционном газохроматографическом анализе (см. разд. 5.2). В масс-спектрометрии использование подобных реакций дериватизации преследует две цели. Первая из них заключается в увеличении летучести вещества экранированием полярных групп, т. е. полярные протоны кислот, аминов, спиртов и фенолов заменяются более инертными группами путем, например, этерификации кислотных групп, ацетилирования амихюгрупп или силанизиро-вания. Кроме этого, дериватизацией можно улучшить параметры ионизации. Так, включение пентафторфенильного заместителя обеспечивает более интенсивный отклик в случае масс-спектрометрии отрицательно заряженных ионов при химической ионизации электронным захватом. В рамках этих направлений, многие нелетучие и (или) термически нестабильные вещества, такие, как стероиды, (амино)кислоты, сахара, и широкий спектр лекарственных препаратов, становятся доступными газохроматографическому и ГХ-МС-анализу. Очевидно, что процедура дериватизации влияет на массу исследуемого соединения. В общем случае, сдвиг в область более высоких значений m/z является преимуществом, так как в этой области должно быть меньшее число мешающих компонентов. Однако в случае идентификации неизвестных соединений надо помнить, что дериватизация может привести и к непредвиденным артефактам тогда для определения молекулярных масс рекомендуется использовать методы мягкой ионизации (разд. 9.4.2). [c.301]

    Возможности количественного масс-спектрометрического анализа в первую очередь основаны на достаточно большом диапазоне линейности суммарного сигнала источника ионов (особенно в случае электронного удара) как функции от концентрации вещества в нем. Линейный диапазон масс-спектрометра оказывается большим, чем для некоторых селективных хроматографических детекторов (наиример, по захвату электронов). На этом факте основано использование хромато-масс-лектрометров в режиме масс-фрагментографии для селективного количественного определения следов различных веществ, например примесей органических соединений в атмосферном воздухе [25], получившее в последние годы широкое распространение. Суммарный аналитический сигнал спектрометра зависит также от так называемых сечеиий ионизации, определяемых энергией электронов, составом и структурой исследуемых веществ. При количественном анализе обычно используются относительные сечения ионизации  [c.26]

    Современные хромато-масс-спектрометры позволяют переходить от регистрации масс-спектров электронного удара к химической ионизации в течение 2—3 с, т. е. записать два различных спектра даже для одного хроматографического пика. В некоторых приборах (LKB-2091, Varian МАТ 44S ) предусмотрена возможность детектировать отрицательные ионы М " в режиме химической ионизации. Такие ионы получаются при захвате молекулами органических соединений тепловых электронов, возникающих вследствие торможения первоначального электронного пучка в источнике ионов молекулами газа-реактанта. Полученные в настоящее время данные еще не позволяют судить о закономерностях поведения различных соединений в условиях подобной ионизации, однако сообщалось, что некоторые азотсодержащие вещества при этом могут детектироваться в количествах до 10 г [18]. По-видимому, этот метод найдет широкое применение при анализе следовых количеств органических соединений. [c.82]

    Иетастабильные ионы. В процессе ионизации образуются неустойчивые (метастабильные) ионы. Если время распада иона составляет с, то это близко к времени нахождения иона в камере масс-спектрометра на пути от ионного источника до анализатора. В этом эксперименте будут регистрироваться ионы распада. Однако пики этих ионов в масс-спектре имеют диффузный характер. Пояснения даются ниже при описании схемы эксперимента. Отрицательные ионы. Они образу ются в резу льтате резонансного захвата электрона  [c.23]

    Несмотря на очевидные достоинства масс-спектрометрии при изучении образования отрицательных ионов (возможность анализа по массовым числам ионов, отсутствие фона потенциального рассеяния), во многих случаях имеют явное преимущество другие методы. Например, абсолютные значения сечений захвата электронов молекулами с образованием отрицательных ионов были получены для большого числа молекул с использованием трубки полной ионизации (Бучельникова [60], Шульц [27, 28, 40]), в то же время при масс-спектрометрическом исследовании значения сечений образования ионов могут быть получены только методом сравнения на выходе масс-спектрометра ионных токов исследуемого вещества и вещества-репера с известным сечением образования ионов. [c.18]


Смотреть страницы где упоминается термин Ионизация в масс-спектрометрии электронный захват: [c.17]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Захват

Ионизация в масс-спектрометрии

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Электрон масса

Электронный захват

Электроны захвата

захват масса



© 2025 chem21.info Реклама на сайте