Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

фотосинтез синтез крахмала

    В такой концентрации цинк подавляет фотосинтез всех планктонных растительных организмов. Так как планктон служит начальным звеном пищевой цепи и главным пищевым ресурсом для многих видов рыб, то подавление фотосинтеза (синтеза крахмала и сахара в зеленых растениях с помощью солнечной энергии) может иметь далеко идущие последствия. [c.81]


    Позднее Зейбольд [74] высказал мнение, что наиболее важным результатом, определяемым отношением [а] [Ь], является скорее интенсивность первичного синтеза крахмала, чем приспособление к свету. Эта новая гипотеза опирается на менее обширный экспериментальный материал, чем прежняя теория адаптации. Мнение Зейбольда, что хлорофилл Ь является специфическим сенсибилизатором полимеризации сахаров до крахмала, а не собственно фотосинтеза, кажется в высшей степени неправдоподобным. Остается невыясненным вопрос о том, является ли правильной корреляция содержания хлорофилла Ъ и образования крахмала, и если это так, то [c.405]

    Запасные полисахариды присутствуют в растениях в коллоидном состоянии или в водонерастворимой форме, благодаря чему они могут накапливаться в растительных клетках в большом количестве, не влияя на осмотическое давление. Крахмал — наиболее важный и накапливающийся в наибольшем количестве запасный полисахарид в мире растений. У всех растений — от низших водорослей до некоторых высших растений, главным образом двудольных,— углеводы, образовавшиеся в процессе фотосинтеза в хлоропластах, немедленно превращаются в крахмал (фото 46). Такой крахмал называют ассимиляционным. Согласно Смиту [160], у подсолнечника в крахмал превращается почти весь ассимилированный углерод. Однако ассимиляционный крахмал представляет собой довольно лабильную, переходную форму он либо довольно быстро используется в процессах метаболизма, либо превращается в ряде органов, например в семенах, плодах, стеблях, листовых влагалищах и корнях, в запасный крахмал. Эти общие метаболические особенности присущи так называемому крахмалистому листу. Напротив, в сахаристом листе злаков (однодольные растения) крахмал почти не обнаруживается. Сахара здесь представлены главным образом сахарозой и различными моносахаридами они транспортируются в другие части растения и превращаются в запасный крахмал в специальных органах. Например, энергичный синтез крахмала обычно имеет место в листовых влагалищах и в семенах злаков, начиная от периода цветения и кончая периодом созревания зерна. В ряде работ показано, что образование крахмала в зерне ячменя, риса и ржи в стадии налива специфически связано с ассимиляционной активностью верхних листьев и колоса, но не с ассимиляционной активностью расположенных ниже листьев [8, 144]. [c.140]

    Биосинтез полисахаридов растений. Избыток моносахаридов, образующихся в процессе фотосинтеза, используется растениями для синтеза крахмала и целлюлозы — главных растительных полисахаридов. Синтез крахмала в растениях катализируется несколькими ферментами крахмал-синтетазами) и протекает с участием затравки декстрина, содержащего четыре и более остатков глюкозы. Источником глюкозы является АДФ-глюкоза (реже — УДФ-глюкоза)  [c.423]


    Микроэлементы повышают активность ферментов, катализирующих биохимические процессы в организмах растений, способствуют синтезу белков и нуклеиновых кислот, витаминов, сахаров и крахмала. Некоторые микроэлементы оказывают положительное действие на фотосинтез, ускоряют рост и развитие растений, созревание семян. [c.311]

    Углеводы (сахара и крахмал) —важные пищевые продукты, за счет которых организм человека получает большую часть необходимой ему энергии (разд. 14.8). Энергию для синтеза сахаров, крахмала и целлюлозы растения получают в виде солнечного света. Этот процесс, называемый фотосинтезом, осуществляется при участии зеленого вещества— хлорофилла, содержащего атом магния. Формула хлорофилла имеет следующий вид  [c.401]

    Основным запасным полисахаридом в растениях является крахмал, образующийся в пластидах (хлоропластах или аминопластах) в виде крахмальных зерен диаметром от 1 до 100 мкм. Биосинтез крахмала проходит в две ступени сначала образуется амилоза, а затем на ее основе осуществляется синтез амилопектина. Крахмал на длительный период накапливается в семенах, где используется при их прорастании. Обычно же он концентрируется в листьях в период активного фотосинтеза, после которого ферментами переводится в удобную для транспортных целей сахарозу. [c.338]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]

    Биосинтез начинается с фотосинтеза [1]. Вся жизнь на Земле зависит от способности некоторых организмов (зеленых растений, водорослей и фотосинтезирующих бактерий), содержащих характерные фотосинтезирующие пигменты, использовать энергию солнечной радиации для синтеза органических молекул из неорганических веществ — диоксида углерода, азота и серы. Продукты фотосинтеза служат затем не только исходными веществами, но и источником химической энергии для всех последующих биосинтетических реакций. Обычно принято описывать фотосинтез только как процесс образования углеводов в некоторых случаях основными продуктами фотосинтеза, действительно, являются исключительно крахмал, целлюлоза и сахароза, однако в других организмах на синтез углеводов идет, быть может, всего лишь третья часть углерода, связываемого и восстанавливаемого в процессе фотосинтеза. При ближайшем рассмотрении оказывается, что нельзя провести четкую границу между образованием продуктов фотосинтеза и другими биосинтетическими реакциями в клетке, в которых могут участвовать промежуточные вещества фотосинтетического цикла восстановления углерода. [c.396]

    Кратковременное освещение красным светом этиолированных проростков влечет за собой глубокие изменения. Последние выражаются в том, что увеличиваются размеры листьев, ткани приобретают зеленую окраску (обусловленную синтезом хлорофилла и других хлоропластных компонентов), а запасы крахмала интенсивно утилизируются до начала активного фотосинтеза. [c.371]


    Глюкоза, образовавшаяся в процессе фотосинтеза, служит предшественником для синтеза типичных растительных углеводов — сахарозы, крахмала, целлюлозы. [c.220]

    Крахмал образуется в зеленых растениях при фотосинтезе из диоксида углерода и воды через промежуточную стадию синтеза глюкозы [c.511]

    Согласно одной из старых теорий (А. Байер, 1870 г.), первичным продуктом ассимиляции двуокиси углерода в растениях является формальдегид, в результате полимеризации которого образуется глюкоза, а из последней — крахмал. В результате новых исследований установлено, что формальдегид не возникает в качестве промежуточного продукта в этом синтезе. Таким образом, не существует какой-либо аналогии между описанными выше синтезами и фотосинтезом в растениях. Последний можно изобразить следующим стехиометрическим уравнением  [c.260]

    Прежде чем приступить к изучению метаболизма клеток, следует рассмотреть углеводы, поскольку их можно считать основой существования большинства организмов. В таких углеводах, как сахара и крахмал, заключено основное количество калорий, получаемых с пищей человеком, почти всеми животными и многими бактериями. Центральное место углеводы занимают и в метаболизме зеленых растений и других фотосинтезирующих организмов, утилизирующих солнечную энергию для синтеза углеводов из СО2 и Н2О. Образующиеся в результате фотосинтеза огромные количества крахмала и других углеводов играют роль главных источников энергии и углерода для неспособных к фотосинтезу клеток животных, растений и микроорганизмов. [c.302]

Рис. 13-3. Поток солнечной энергии и круговорот углерода, кислорода и азота на примере одной из экосистем. В этой изолированной экосистеме в результате фотосинтеза, осуществляемого травянистой растительностью, фиксируется атмосферная СО , образуются органические соединения и выделяется кислород. Почвенные микроорганизмы фиксируют атмосферный азот, переводя его в аммиак и нитраты, используемые затем растениями в качестве источников азота для синтеза белков и нуклеиновых кислот. Зебры получают кислород из воздуха, а необходимый им углерод и аминокислоты-из растений в результате окисления крахмала, белка и других компонентов растительной пищи. Львы поедают зебр, а их экскременты попадают в почву, где микроорганизмы перерабатывают их, завершая цикл. Рис. 13-3. Поток <a href="/info/103702">солнечной энергии</a> и <a href="/info/510849">круговорот углерода</a>, кислорода и азота на примере одной из экосистем. В этой изолированной экосистеме в <a href="/info/97029">результате фотосинтеза</a>, осуществляемого травянистой растительностью, фиксируется атмосферная СО , <a href="/info/1658106">образуются органические соединения</a> и <a href="/info/1416439">выделяется кислород</a>. <a href="/info/1668274">Почвенные микроорганизмы</a> фиксируют <a href="/info/631491">атмосферный азот</a>, переводя его в аммиак и нитраты, используемые затем растениями в <a href="/info/627804">качестве источников азота</a> для <a href="/info/76658">синтеза белков</a> и <a href="/info/548">нуклеиновых кислот</a>. Зебры <a href="/info/1915161">получают кислород</a> из воздуха, а необходимый им углерод и аминокислоты-из растений в <a href="/info/399341">результате окисления</a> крахмала, белка и <a href="/info/1529853">других компонентов</a> <a href="/info/593539">растительной пищи</a>. Львы поедают зебр, а их экскременты попадают в почву, где микроорганизмы перерабатывают их, завершая цикл.
    Если невероятно, что при синтезе углеводов дисахариды могут предшествовать моносахаридам, то еще менее вероятно, чтобы при фотосинтезе мог прямо образовываться крахмал (как иногда предполагают например, Бэли). Правда, можно было бы придумать [c.51]

    Сахароза, играющая важную роль в обмене веществ, накапливается сахарной свеклой и сахарным тростником. Синтез сахарозы связан с фосфорным обменом. Крахмал, образующийся в листьях при фотосинтезе, легко превращается в сахарозу — транспортную форму углеводов. В виде сахарозы синтезированные углеводы перемещаются в семена, клубни, луковицы растений, где сахароза снова превращается в крахмал (или инулин). [c.401]

    В цитоплазме много ДНК. Часть ее сосредоточена в митохондриях -энергетических станциях клетки, а у растений - в пластидах, осуществляющих фотосинтез, синтез крахмала, нигментов и др. эти органеллы цитоплазмы размножаются в клетке делением. Найдена ДНК также и вне таких органелл. Что она делает , какова ее роль в жизни клетки ДНК органелл участвует в их размножении или функционировании, несет информацию о некоторых важных белках, а остальной цитонлазмической ДНК могут быть приписаны разные функции от регуляции генетической изменчивости или синтеза белка до просто паразитического существования без всякой функции. [c.114]

    Зейбольд [74] отмечает, что зеленые водоросли, не содержащие хлорофилла Ъ, не образуют крахмала в качестве первого продукта ассимиляции. Так, например, Vau heria накопляет масло, а не крахмал. Рассмотрение остальных групп водорослей не противоречило этому правилу. Если крахмал встречается в окрашенной водоросли, не содержащей хлорофилла Ъ, он является, по мнению Зейбольда, вторичным продуктом. Зейбольд считает, что только хлорофилл а участвует в фотосинтезе сахара, а хлорофилл Ъ служит специфическим сенсибилизатором синтеза крахмала однако это представление не получило признания других исследователей. [c.408]

    В растениях широко представлены различные углеводы. Как уже указывалось, в листьях растений при освещении быстро появляется крахмал. Отсюда следует, что из фосфоглицериновой кислоты, возникающей при фотосинтезе, образуется глюкоза, вернее глюкозофосфорная кислота, которая используется как материал для синтеза крахмала. Обнаружение в растениях фосфорилазы и изучение ее действия дали основу для представления о ходе синтеза крахмала. В присутствии фосфорилазы происходит реакция  [c.234]

    Хлоропласты имеют определенную биохимическую и генетическую автономность. В них синтезируется ДНК, которая отличается от ядерной ДНК. Хлоропластам свойственны также своя белоксинтезируюнхая система (рибосомы) и автономность процесса биосинтеза белка. Увеличение размеров пластид коррелирует с накоплением белка. Хлоропласт можно представить как уменьшенную и упрощенную модель клетки, которая реагирует на. действие света включением и выключением своих генов. Основная функция хлоропластов — участие в процессе фотосинтеза. Функция лейкопластов — участие во вторичном синтезе крахмала в клетках. Хромопласты, как прави.по, [c.60]

    У растений пшеницы с момента выхода их в трубку начинаются неуклонное уменьшение содержания органического азота в вегетативных частях и отток его к интенсивно развивающимся колосьям. По мере созревания колоса в листьях и соломе снижается абсолютное содержание клетчатки, гемицеллюлозы и лнгннна, которые используются на синтез крахмала и гемицеллюлозы зерна. Этот процесс называется раздревеснением. Таким образом, накопление крахмала и гемицеллюлоз в созреваю-И1ИХ семенах происходят не только за счет сахаров, образующихся в листьях в процессе фотосинтеза, но и за счет растворимых углеводов, которые синтезируются из клетчатки II гемицеллюлоз, содержащихся в клеточных оболочках листьев и соломы. Следовательно, увеличение общего урожая зерна, сопровождается постепенным уменьшением доли листьев и стеблей в нем (табл. 26), [c.490]

    Осуществление фотосинтеза и его скорость зависят от движения метаболитов из хлоропласта в цитоплазму и обратно. Сахарофосфаты уносятся из хлоропласта и используются для синтеза сахарозы, а высвобождающийся в этой реакции фосфат переносится обратно в хлоропласт, где он может быть использован для синтеза крахмала. По-видимому, для изучения процесса фотосинтеза в целом и его продуктивности решающее значение имеет исследование регуляторных механизмов, управляющих синтезом сахарозы и крахмала и транспортом сахаров в клетке и листе. [c.115]

    МНОГИХ растениях почти ие идет, поэтому содержание неорганического фосфата в цитоплазме снижается. У растений с Сз-путем фиксации СО2 скорость фотосинтеза падает, но одновременно возрастает скорость синтеза крахмала, как и следовало ожидать из опытов с изолированными хлоропластами. В определенных условиях эти изменения могут быть очень большими (в 10 раз). Исследования, проведенные с меченой маннозой,по- [c.281]

    К счастью, удалось однозначно показать, что крахмал, образующийся в этих пластидах (пластидах клеток обкладкн проводящих пучков), возникает из растворимых углеводов, образующихся в пластидах мезофилла н затем поступающих в клетки паренхимной обкладки, где и происходит синтез крахмала , Прошли годы, и стало ясно, что для обеспечения высокой скорости фотосинтеза у С4-растеиий необходим С4-цикл, который функционирует как механизм, концентрирующий СОа, и который зависит от функционально активного состояния фотосинтезирующих клеток мезофилла. Клетки мезофилла у С4-растений не могут самостоятельно синтезировать сахара из СОг, однако упомянутая выше концепция продержалась достаточно долго — до того момента, когда были проведены основополагающие биохимические исследования (синтез сахарозы и крахмала у С4-расте-ний обсуждается в разд. 12.10). [c.310]

    К микроудобрениям относятся вещества, потребляемые растениями в малых количествах (несколько килограммов на гектар). Активными элементами в них являются преимущественно В, Mg, Мп, Си, J, Со и другие редкие элементы, главное назначение которых заключается в том, что сии попьпиашт. активность ферментов, являющихся катализаторами биохимических процессов в организме растений и животных. Они, активизируют синтез углеводородов — сахара, крахмала, белков, витаминов и др., стимулируют развитие и созревание растений, повышают устойчивость их при неблагоприятных условиях (холод, засуха, вредители, болезни). Так, добавка 6—9 кг борной кислоты повышает урожай клевера на 0,5—1 ц га, овощей — на 2—5 ц га, магний входит в состав хлорофилла, содействуя, таким образом, фотосинтезу в растениях. [c.190]

    Важнейшие биохимические реакции связаны с превращениями энергии в живой клетке. Энергия накапливается и передается в молекулах аденозинтрифосфорной кислоты (АТФ) — нуклеотида, состоящего из азотистого (пуринового) основания аденина, сахара (рибозы) и трех остатков фосфорной кислоты, которые связаны между собой богатыми свободной энергией (макроэргическими) химическими связями. Исходным источником энерги1Г является солнечный свет, энергия которого в зеленых листьях растений при участии красящего вещества—хлорофилла расходуется на синтез АТФ (фотосинтетическое фосфорилирование). В дал1.нейшем АТФ расходует накопленную энергию в последующих стадиях фотосинтеза, приводящих к образованию из двуокиси углерода и воды крахмала — полимерного сахаристого вещества в котором на длительное время запасается [c.491]

    При реакциях с кислотами моносахариды могут образовывать сложные эфиры. Некоторые из этих эфиров имеют очень большое значение, так как играют важную роль в обмене веществ. Особенно важное значение имеют эфиры сахаров с фосфорной кислотой, так называемые сахарофосфаты, или фосфорные эфиры сахаров. Такие важнейшие процессы обмена веществ, как фотосинтез, дыхание, брожение, синтез сахарозы, крахмала, гликогена, и многие другие процессы протекают при обязательном участии фосфорных эфиров сахаров. В процессах обмена веществ наибольшее значение имеют следующие фосфорные эфиры моносахаридов  [c.107]

    Основные процессы фотосинтеза сегодня уже хорошо известны. Они протекают в хлоропластах (рис. 2.2), которые поглощают СОг, поступающий в растение путем диффузии. Первичный процесс карбоксилирования осуществляется в строме (части хлоропласта, содержащей мало мембран) и катализируется рибулозобисфосфат-карбоксилазой (РБФК)- В результате образуются две молекулы трехуглеродной кислоты (фосфогли-церата, ФГ), которые затем восстанавливаются с образованием молекул трехуглеродного сахара — триозофосфата. Это вещество в, хлоропластах служит предшественником крахмала, но может поступать и в цитоплазму, где оно используется при синтезе сахарозы. Часть связанного углерода повторно поступает в вое- [c.42]


Смотреть страницы где упоминается термин фотосинтез синтез крахмала: [c.600]    [c.130]    [c.154]    [c.153]    [c.219]    [c.235]    [c.279]    [c.281]    [c.284]    [c.285]    [c.351]    [c.393]    [c.395]    [c.132]    [c.71]    [c.17]    [c.38]    [c.50]    [c.52]    [c.267]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Крахмал

Фотосинтез



© 2025 chem21.info Реклама на сайте