Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы также Сахара синтез

    Например, в живых организмах из веществ относительно простого состава (вода, углекислый газ и сахар), в которых упорядоченность очень низка, образуются многие сложно построенные соединения (белки и т. д.), имеющие весьма высокую упорядоченность атомов. Такие процессы (например, синтез белков) идут с уменьшением энтропии. Зато одновременно другие вещества (молекулы сахара, жиры и т. д.) в результате окисления распадаются на более простые соединения (в конечном счете на углекислый газ и воду), а при этом снова происходит значительный рост энтропии. Конечно, в растениях из углекислого газа и воды в процессе фотосинтеза образуются также сахар и другие углеводы, но этот процесс идет не изолированно, а с поглощением энергии излучения Солнца. [c.126]


    В регуляции содержания глюкозы в крови имеют значение использование углеводов в различных органах, а также процессы синтеза жиров из углеводов. Интересно отметить, что инсулин усиливает образование жира из углеводов. Таким образом, использование углеводов для синтеза жиров уменьшает запасы гликогена в печени и снижает уровень сахара в крови. [c.84]

    Исходные углеводы, а также конечные продукты описанных синтезов должны быть идентифицированы и охарактеризованы принятыми для этого способами. В этой связи представляется целесообразным описать основные методы аналитической химии сахаров. [c.175]

    Органические соединения широко распространены в окружающем мире. К ним относятся 1) органические ископаемые не( ь, каменный уголь, природные газы, являющиеся основным сырьем для получения большинства продуктов промышленного органического синтеза. Эти соединения состоят преимущественно из углерода и водорода важнейшие из них — углеводороды 2) органические вещества растений, дающие распространенные технические материалы древесину, текстильные волокна (хлопок, лен, джут и т. д.) и основные пищевые продукты (зерно, сахар, растительные масла). Они состоят преимущественно из углерода, водорода и кислорода наиболее важными соединениями являются углеводы 3) органические вещества животных здесь главенствуют белки. Животные волокна (шерсть и шелк) также представляют собой белковые вещества. Элементный состав характеризуется присутствием азота (наряду с углеродом, водородом и кислородом) 4) органические вещества планктона — микроорганизмов, населяющих моря и океаны. В растениях и планктоне сосредоточена основная масса органических веществ на нашей планете. [c.6]

    Многостадийный синтез типичен также для органических соединений в клетке. Биосинтез белков, жиров (липидов) и углеводов (сахаров) не может протекать самопроизвольно из-за того, что все перечисленные соединения способны самопроизвольно окисляться. Иными словами, реакции окисления этих веществ имеют АС О, а реакции их биосинтеза из СО2, П2О и N2, соответственно, ДО 0. В этом — главная причина сложнейшего устройства живых клеток. [c.62]

    Синтез жиров происходит у животных в печени, в слизистой оболочке кишечника, молочной железе и жировой ткани. Общеизвестно, что жиры у животных, а также растений и микроорганизмов легко образуются из углеводов. Многие микроорганизмы — дрожжи, плесневые грибы, бактерии — способны синтезировать жиры из углеводов довольно в значительных количествах (в некоторых случаях до 60% от сухого веса). Синтез жира нз сахара у микроорганизмов и в созревающих семенах и плодах идет лишь при доступе кислорода со значительной затратой энергии. Например, при синтезе стеариновой кислоты из глюкозы потребляется 945,7 ккал теплоты (4072 кдж) на 5 лоль потребленной глюкозы. Суммарные уравнения этой реакции можно представить в следующем виде  [c.399]


    Т)-Глюкоза ( крахмальный сахар , виноградный сахар или кукурузный сахар ) в свободном виде присутствует в зеленых частях растений, ягодах, фруктах, меде, в крови человека и животных (от 0,07 до 0,11 %). Как наиболее распространенный углевод животных глюкоза играет роль связующего звена между пластическими и энергетическими функциями углеводов, так как используется в организмах для синтеза всех других моносахаридов и наоборот — для превращения разных моносахаридов в глюкозу. Кроме того, глюкоза может синтезироваться в организме из аминокислот, а также из глицерина, входящего в состав триацилглицеринов. Глюкоза входит в состав большого числа полисахаридов, гликозидов. Она находит широкое применение в пищевой и текстильной (как восстановитель при крашении и печатании) промышленности, а также в медицине. [c.239]

    Для объяснения этой своеобразной перегруппировки, используемои также для синтеза новых сахаров, предполагают, что при действии щелочей происходит енолнзация углеводов. Б результате се из D-глюкозы, о-манмозы или )-фруктозы образуется соединение [c.422]

    ИСКУССТВЕННАЯ ПИЩА, пищ. продукты, к-рые олуча -ют из разл. пищ. в-в (белков, аминокислот, липидов, углеводов), предварительно выделенных из прир. сырья или полученных направленны.м синтезом из минер, сырья, с добавлением пищевых добавок, а также витаминов, минер, к-т, микроэлементов и т. д. В качестве прир. сырья используют вторичное сырье мясной и молочной пром-сти, семена зерновых, зернобобовых и масличных культур и продукты их переработки, зеленую массу растений, гидро-бионты, биомассу микроорганизмов и низших растений прн этом выделяют высокомол. в-ва (белки, полисахариды) и иизкомолекулярные (липиды, сахара, аминокислоты и др ) Низкомол. пищ. в-ва м. б. получены также микробиол. синтезом из глюкозы, сахарозы, уксусной к-ты, метанола, углеводородов, ферментативным синтезом из предшественников и орг. синтезом (вкл очая асимметрич. синтез для оптически активных соед ). Высокомол. в-ва должны обладать определенными функциональными св-вамн, такими, как р-римость, набухание, вязкость, поверхностная активность, способность к прядению (образованию волокон) и гелеобразованию, а также необходимым составом и способностью перевариваться в желудочно-кишечном тракте. Низкомол. в-ва химически индивидуальны или являются смесями в-в одного класса в чистом состоянии их св-ва не зависят от метода получения. [c.273]

    Распространение в природе. Высшие сахара долгое время были известны только как синтетические соединения, полученные Э. Фишером в ходе его блестяш,их исследований по установлению строения углеводов и их синтезу. В настояш,ее время высшие сахара найдены во многих природных источниках и в ряде случаев играют важную биологическую роль. Так, например, D-алыпро-гептулоза (седогептулоза) входит в состав листьев всех зеленых растений и принимает участие в фотосинтетическом углеродном цикле (см. гл. 13). Через нее проходит также один из путей превраш,ения углеводов в организме, известный под названием окислительный пентозофосфатный цикл (см. гл. 13). [c.317]

    Для объяснения этой своеобразной нерегругшнровки, используемой также для синтеза новых сахаров, предполагают, что прн действии щелочей нроисходит еиолизация углеводов. В результате ее нз D-глюкозы, /)-маннозы или )-фруктозы образуется соедипение [c.422]

    В свежеубранном, технически зрелом сырье в большинстве случаев процессы синтеза еще не совсем завершены, поэтому происходит так называемое послеуборочное дозревание — превращение сахара в крахмал, аминокислот в белки и т. д., т. е. образование более сложных и метаболически менее подвижных веществ, в результате чего наступают физиологическая зрелость и состояние покоя. Дозревание длится у картофеля 1,25—1,5 мес, у зерна— 1,5—2 мес. Свежеубранную кукурузу хранят обычно в початках, при этом из стержня в зерно переходит дополнительное количество растворимых углеводов, превращающихся внутри него также в крахмал. Дозревание кукурузного зерна в початках заканчивается по достижении нормальной влажности. [c.44]

    Для предотвращения сердечных заболеваний путем поддержания низкого уровня содержания холестерина в крови, по-видимому, наиболее важно ограничить потребление сахарозы — обычного сахара. В настоящее время среднесуточное потребление углеводов в Соединенных Штатах и других развитых странах составляет примерно 175 г крахмала, 140 г сахарозы, 20 г лактозы, 10 г фруктозы и 5 г других сахаров. (Полтораста лет назад потребление сахарозы составляло одну шестую этого количества.) Экспериментально показано, что у человека, получающего 100 г сахарозы в день, содержание холестерина в сыворотке крови на 50 МГ-ДЛ выше, чем у человека, который получает с пищей только полисахариды глюкозы (крахмал). Объясняется этот эффект тем, что фруктозная половина сахарозы подвергается превращениям, приводящим к синтезу дополнительных количеств холестерина. Английский биохимик и специалист в области питания Джон Юдкин показал, что распространенность коронарных болезней возрастает с увеличением потребления сахара (сахарозы). У людей, суточное потребление сахара которых составляет 150 г и более, подобные заболевания встречаются в шесть раз чаще, чем у людей, употребляющих по 75 г сахара в сутки. С высоким потреблением сахарозы также связана более высокая распространенность и других болезней. Надежный способ сохранения здоровья основан на уменьшении потребления сахарозы, а этого нетрудно достигнуть путем отказа от сахара, сладких дессертных блюд и сладких напитков. [c.409]


    Рост производства этанола связан с широтой его применения в химической промышленности. Он прекрасный растворитель, антифриз, экстрагент. Этанол служит также субстратом для синтеза многих растворителей, красителей, лекарственных препаратов, смазочных материалов, клеев, моющих средств, пластификаторов, взрывчатых веществ и смол для производства синтетических волокон. Его используют в двигателях внутреннего сгорания либо в безводном виде, либо в форме гидратированного этанола. Среди растений, продуцирующих этиловый спирт, следует вьщелить маниок, злаки (особенно кукурузу) и топинамбур, у которого запасным углеводом является инулин. Используются также сахарный тростник, ананас, сахарная свекла, сорго, у которых основной углевод — сахароза. При переработке сахарного тростника его тщательно давят, целлюлозу (жом) отделяют от сладкого сока и сжигают, а сок концентрируют, стерилизуют и подвергают брожению. Этот раствор отделяют от твердых компонентов и далее из 8 —10%-го спиртового раствора путем перегонки получают этанол. Из оставшейся жидкости (стиллаж) после соответствующей переработки извлекают компоненты удобрений с выходом 2—3 %. Барду (кубовой остаток) после перегонки используют в качестве корма для сельскохозяйственных животных. Крахмал при его переработке сначала гидролизуют в сбраживаемые сахара. Производство этанола из мелассы с использованием жома [c.24]

    Стрептомицин относится к семейству аминогликозильных антибиотиков, широко используемых в медицине. Членами этого семейства являются также канамицины, неомицины и гентамицины . Все они представляют собой водорастворимые углеводы основной природы, содержащие три или четыре циклических сахара необычного типа. Основным предшественником стрептомицина является О-глюкоза из нее образуются все три стрептомициновых кольца. Каким образом синтезируется 2-дезокси-2-метиламино-Ь-глюкоза, до сих пор еще не ясно, но пути синтеза двух других колец — Ь-стрептозы и стрептидина— полностью охарактеризованы - . Предшественником стрептидина служит нуклеозиддифосфатмоносахарид— промежуточный продукт синтеза Ь-рамнозы [уравнение [c.532]

    Специфичные сахарные остатки выполняют функции узнавания. Последние два примера табл. 10.3 показывают, что сахара выполняют важную роль в специфических взаимодействиях между поверхностями клеток и растворимыми макромолекз лами. Межклеточное распознавание, например, при образовании тканей из различных типов клеток также основано на структурном разнообразии гликопротеидов [709, 713]. Сахара действительно являются подходящими элементами образования некоторых специфических структур [85]. Если из трех различных аминокислот можно составить только шесть различных пептидов (используя все перестановки), то из трех сахарных остатков можно образовать по меньшей мере в десять раз больше первичных структур в связи с этим многие из возможных объединений моносахаридов используются in vivo. Однако механизмы узнавания с участием сахарных остатков часто основываются скорее на стохастических, чем на стехиометрических процессах, поскольку синтезу сложных углеводов недостает точности белкового синтеза. [c.270]

    Много работ опубликовано по хроматографии углеводов, особенно В. В. Рачинским, Б. Н. Степаненко. Установив зависимость между структурой и величиной Rf, можно оценить степень полимеризации олигосахаридов, влияние положения оксигрупп. На бумаге из стеклянных волокон, предварительно забуференной, можно четко разделять различные монозы, биозы, триозы, галактуровую и глюкуроновую кислоты. В микроорганизмах можно определять связанные углеводы, свободные MOHO- и дисахариды в растительном материале, также свободные олигосахариды, свободные углеводы в крови и моче, молоке, наблюдать гидролиз и синтез олиго- и полисахаридов, энзиматические превращения моносахаридов в связи с процессами окисления, восстановления, изомеризации, реакции углеводов с азотсодержащими соединениями, контролировать чистоту углеводов и идентифицировать их, определять кислоты и ла-ктоны, уроновые кислоты, кетокислоты, метилированные сахара, дезоксисахара, аминосахара, полисахариды, инозит, сорбит, эфиры фосфорной кислоты, структуру галактоманнана, эремурана, новых галактозидов, проследить превращение сахарозы, синтез олигосахаридов в растущей культуре. Бумажная хроматография применяется в сахарной промышленности, в пивоварении. Мало еще разработана теория распределительной хроматографии углеводов, мало изучены возможности разделения оптических изомеров и антиподов. [c.201]

    Молекулы углеводов и их производных содержат асимметрические атомы углерода и поэтому почти все проявляют оптическую активность. Исключение составляют соединения, обладающие общей симметрией строения (например, дульцит, ксилит, рибосахарная кислота и др.), а также рацемические смеси сахаров, образующиеся при некоторых синтезах. [c.184]

    Исследования структуры простых сахаров дали важные в научном и практическом отношении результаты, хотя и не привели к промышленному синтезу этих важнейших соединений. Значение этих результатов вышло за рамки изучения природы самих, сахаров. Было установлено, что моносахариды (гексозы, пентозы,. тетрозы и т.д.) служат структурными компонентами более сложных углеводов — полисахаридов, крахмала и целлюлозы. Было также показано, что широко распространенные в растениях глю-козиды представляют собой соединения глюкозы с различными, веществами. Э. Фишеру удалось решить задачу синтеза глюкози-дов. Предложенный им метод состоит в нагревании слабого спиртового раствора соляной кислоты с сахаром. При этом образуются глюкозиды соответствующих спиртов. Он установил также, что между глюкозидами и полисахаридами не существует принципиального различия. [c.185]

    Для питания микроорганизмов необходимы соединения.углерода, лучшим источником которого являются углеводы. Они используются для синтеза белков и жиров, для образования клеточных оболочек и как энергетический материал в дыхательных и других процессах, происходящих в микробных клетках. Из углеводов для питания, например, дрожжей используются главным об1разом сахара. В качестве углеродистого питания применяются органические кислоты и их соли (молочная, уксусная, яблочная, янтарная), а также некоторые спирты (этиловый, маи-нит). В последнее время при помощи меченых атомов установлено, что дрожжи и бактерии для синтеза жиров могут использовать уксусную кислоту, которая превращается в жирные кислоты. [c.514]

    Остановимся теперь на функциях последнего этапа пути. Как механизм, обеспечивающий полную деградацию углеводов, этот путь не получил универсального распространения, хотя есть эубактерии, осуществляющие разложение углеводов в аэробных условиях только по окислительному пентозофосфатному пути. У многих организмов, использующих пентозы в качестве субстратов брожения, окислительный пентозофосфатный путь служит для превращения пентоз в гексозы, которые затем сбраживаются в гликолитическом пути. Кроме того, выще мы упоминали о двух точках пересечения этого пути с гликолизом на этапах образования 3-ФГА и фруктозо-6-фосфата. Все это говорит о тесном контакте окислительного пентозофосфатного пути с гликолизом и о возможном переключении с одного пути на другой. Наконец, помимо пентоз, образующихся на начальных этапах пути, возникновение С4- и С7-сахаров в транскетолазной и трансальдолазной реакциях также представляет определенный интерес для клетки, так как эти сахара являются исходными субстратами для синтеза ряда важных клеточных метаболитов. [c.257]

    В прорастающих семенах масличных растений обнаружены все ферменты глиоксилатного цикла и малатсинтетаза. Эти ферменты присутствуют в препаратах митохондрий, а также в надосадочной жидкости. Скорости отдельных реакций достаточно высоки, чтобы обеспечить суммарную скорость синтеза углеводов из жиров. Известно также, что в растениях содержатся ферменты, участвующие в синтезе сахаров из четырехуглеродной дикарбоновой кислоты. [c.340]

    Далеко не во всех случаях реакция Гриньяра с галоидными производными углеводов проходит успешно. Пока этим путем не удалось связать с остатком молекулы сахара такие вещества, как камфора, борнеол, пиридин, пиррол и некоторые другие [32]. Отсюда возникло стремление использовать для синтеза другие металлоорганические соединения. В ряде случаев было изучено действие литий- и натрийорганических, а также кадмийоргани-ческих соединений на различные галоидоацнлированные альдозы [75, 76]. [c.134]

    На основе разработанной методики синтеза С-производные углеводов получаются в форме сполна ацетилированных сахаров. Это удобно для проведения дальнейших реакций по агликону. Вместе с тем представляет интерес выделение дезацетилированных производных. Дезацетилирование успешно осуществлено при действии на ацетилпроизводные аммиаком в абсолютном метаноле [64, 65], а также хлорной кислотой, взятой в каталитическом количестве. [c.143]

    Все эти соединения вьшолняют самые разнообразные функции в живых организмах. Так, изображенная на рис. 3-12 В-глюкоза не только служит строительным блоком резервного углевода крахмала и структурного углевода целлюлозы, но и играет роль предшественника в синтезе других сахаров, таких, как В-фруктоза, О-манноза и сахароза (тростниковый сахар). Жирные кислоты-это компоненты не только сложных липидов клеточных мембран, но и жиров-богатых энергией соединений, обеспечивающих накопление запасного топлива в организме. Кроме того, жирные кислоты входят в состав защитного воскового налета на листьях и плодах растений, а также служат предшественниками других специализированных соединений, инокислоты - это не только строителШые блоки белков некоторые из них могут быть нейроме- [c.69]

    Производство органических веществ зародилось в очень давние времена, но на первых этапах оно заключалось или в простом выделении соединений, содержащихся в природных веществах (животных и растительных жиров и масел, сахара и др.), или в расщеплении самих природных веществ (спирт — из углеводов, мыло и глицерин —из жиров, разделение продуктов сухой перегонки древесины и т. д.). Органический синтез — получение более сложных веществ из менее сложных—-возник в середине XIX в. и за свою сравнительно короткую историю достиг колоссального развития. Этому способствовали общие успехи химической науки — открытие новых органических реакций и установление физико-химических закономерностей их протекания, а также получение многочисленных соединений, обладающих ценными свойствами. Реализация этих открытий была бы невозможной без параллельного развития всей химической прО МыщленнО Сти и смежных с ней отраслей, а также мащино-, приборостроения и других областей техники. В свою очередь новым поискам давали толчок растущие потребности промыщленности, транспорта, сельского хозяйства и народного потребления. При этом от синтеза встречающихся в природе соединений и материалов постепенно переходят к разработке некоторых их заменителей, а затем и широкого круга синтетических продуктов, зачастую превосходящих по своим качествам природные вещества или вообще не имеющих аналогий с ними. В результате органический синтез стал одной из крупнейших и быстро прогрессирующих отраслей хозяйства и занял важное место в экономике всех стран с развитой химической промышленностью. [c.9]

    Оригинальную и заслуживающую серьезного внимания постановку вопроса о распаде сахара в организме дал В. Леб . Он исходит из того положения, что синтез сахара представляет собою обратимую реакцию. С той же легкостью, с какою сахар образуется путем полимеризации простейших углеводов муравьиного альдегида, гликолевого альдегида, глицеринового альдегида, диоксиацотона,— он деполимеризуется-в. организме, давая, судя по обстоятельствам, тот или другой из указанных продуктов. Леб показал, что деполимеризация глюкозы может также носить постепенный характер, так как ему удалось отщепить от глюкозы муравьиный альдегид и превратить ее в пентозу. [c.105]

    Цинк принимает непосредственное участие в синтезе хлорофилла и оказывает влияние на фотосинтез и углеводный обмен в растениях. При улучшении условий питания растений этим элементом интенсивность фотосинтеза увеличивается , при недостатке же цинка — падает и уменьшается содержание хлорофилла. В опытах В. П. Боженко цинк наряду с. молибденом и бором значительно повышал синтез сахарозы и крахмала, а также общее содержание углеводов в наздемной массе и корнях красного клевера одновременно повышалось также содержание белковых веществ в растениях. В опытах М. Г. Абуталыбова внесение цинка также увеличивало содержание редуцирующих сахаров, сахарозы и общее количество сахаров в листьях пшеницы. [c.240]

    Преимущество этого метода состоит в следующем реакционная смесь освобождается от перйодат- и иодат-ионов, что позволяет осуществлять дальнейшие превращения полиальдегида, образующегося в результате периодатного окисления сахара и остающегося на стадии б в элюате. Эти превращения необходимы для получения дополнительной информации о структуре исходного сахарида и для работ по синтезу. Кроме того, установить присутствие формальдегида [4] в смеси можно непосредственно в элюате, полученном на стадии б. Однако рассматриваемый метод неприменим в тех случаях, когда на стадии б сорбируется сам сахарид, который затем попадает в элюат вместе с иода-том (стадия в) и мешает измерению величины оптической плотности раствора на стадии г. Отмеченное ограничение относится лишь к небольшой группе углеводов, содержащих ионизованные группы, а также к различным производным сахаров с ароматическими заместителями, способными неспецифически связываться анионообменньши смолами. [c.74]

    Давно миновало время, когда углеводы рассматривались лишь как широко распространенные в природе вешества, роль которых СВОДИТСЯ, в основном, к резервным функциям, заключающимся в покрытии непрерывного расхода энергии в процессе жизнедеятельности (моносахариды, крахмал, гликоген), а также к опорным функциям (клетчатка). Значение углеводов в газах химиков и биологов сильно возросло, когда было пока-казано, что фотосинтетических цикл, обеспечивающий синтез О рга ническнх веществ на нашей планете, представляет собой, в основном, химические превращения фосфатов сахаров. [c.5]

    Получение ряда редких или не встречающихся в природе сахаров возможно с помощью альдолазы (А. S. Seriani et al, 1982, G. М. Whitesides et al, 1983)—фермента, катализирующего альдольную конденсацию диоксиацетонфосфата и некоторых его аналогов с альдегидами. Альдолазы могут найти применение также при получении меченых соединений. С учетом интереса к реакциям альдольной конденсации в органическом синтезе, а также синтезе углеводов можно предположить, что альдолазы в ближайшие годы найдут широкое практическое применение. [c.63]


Смотреть страницы где упоминается термин Углеводы также Сахара синтез: [c.530]    [c.383]    [c.197]    [c.172]    [c.202]    [c.367]    [c.447]    [c.519]    [c.408]    [c.73]    [c.9]    [c.217]    [c.48]    [c.192]    [c.57]   
Органическая химия. Т.2 (1970) -- [ c.538 , c.548 , c.551 , c.560 ]




ПОИСК





Смотрите так же термины и статьи:

также Сахара



© 2024 chem21.info Реклама на сайте