Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инсулин, предшественники

    Инсулин образуется в -клетках островков Лангерганса из своего предшественника — проинсулина. По химической природе он является белком. Молекула инсулина состоит из двух полипептидных цепей, в которые включена 51 аминокислота. Полипептидные цепи соединены в двух точках дисульфидными мостиками. Инсулин дает почти все характерные цветные реакции на белок. [c.176]


    Инсулин, получивший свое название от наименования панкреатических островков (лат. insula—островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером (см. главу 1). В чистом виде инсулин был получен в 1922 г. после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. Строение инсулина и его предшественника проинсулина приведено в главе 1 (см. рис. 1.14). В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В—пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина. Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин. [c.268]

    Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), а-цепи (141) и 3-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. На рис. 1.14 представлена последовательность аминокислотных остатков проинсулина. Видно, что молекула инсулина (выделена темными кружками), состоящая из двух цепей (А-21 и В-30 аминокислотных остатков), образуется из своего предшественника-проинсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Строение молекулы инсулина (51 аминокислотный остаток) схематически можно представить следующим образом  [c.57]

    Инсулин — гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень сахара в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний — сахарному диабету, который как причина смерти стоит на третьем месте после сердечно-сосудистьк заболеваний и рака. Инсулин — небольшой глобулярный белок, содержащий 51 аминокислотный остаток и состоящий из двух полипептидных цепей, связанных между собой двумя дисульфидными мостиками. Синтезируется он в виде одноцепочечного предшественника — препроинсулина, содержащего концевой сигнальный пептид (23 аминокислотных остатка) и 35-звенный соединительный пептид (С-пептид). При удалении сигнального пептида в клетке образуется проинсулин из 86 аминокислотных остатков, в котором А и В-цепи инсулина соединены С-пеп-тидом, обеспечивающим им необходимую ориентацию при замыкании дисульфидных связей. После протеолитического отщепления С-пептида образуется инсулин. [c.132]


Рис. 25-17. Образование инсулина. Исходным предшественником инсулина является препро-инсулин (полная структура показана внизу), который после ферментативного отщепления с К-конца 23 аминокислотных остатков превращается в проинсулин. Проинсулин в свою очередь подвергается действию пептидаз в двух местах, показанных стрелками, и превращается в инсулин (выделен красным цветом). Далее с каждого конца вырезанного промежуточного пептида отщепляется по дипептиДу, после чего остается С-пептид, содержащий 30 аминокислотных остатков. Рис. 25-17. <a href="/info/1295247">Образование инсулина</a>. <a href="/info/1420052">Исходным предшественником</a> инсулина является препро-инсулин (<a href="/info/1541946">полная структура</a> показана внизу), который после ферментативного отщепления с К-конца 23 аминокислотных остатков превращается в проинсулин. Проинсулин в свою очередь подвергается <a href="/info/614811">действию пептидаз</a> в <a href="/info/1696521">двух</a> местах, показанных стрелками, и превращается в инсулин (<a href="/info/727933">выделен красным</a> цветом). Далее с каждого конца вырезанного промежуточного пептида отщепляется по дипептиДу, после чего остается С-пептид, содержащий 30 аминокислотных остатков.
    Адреналин (I) — гормон мозгового вещества надпочечников вместе со своим непосредственным предшественником норадреналином (И) он присутствует там в высокой концентрации (у человека 0,5 л г на I г сухой ткани). Однако относительные концентрации этих аминов в мозговом веществе надпочечников чрезвычайно варьируют у различных видов кроме того, эти амины, вероятно, могут выделяться селективно. Инсулин в определенных условиях вызывает почти полное исчезновение адреналина (но не норадреналина) в мозговом веществе. По-видиМому, можно предположить существование двух типов клеток в мозговом веществе надпочечников, причем один тип клеток секретирует адреналин, а другой — норадреналин. [c.360]

    В норме инсулин выделяется в кровь после приема пищи и обеспечивает анаболические процессы увеличивает скорость синтеза и накопления белков, а также веществ, являющихся резервом энергии (гликоген и липиды). Практически все клетки (кроме нервных) нуждаются в инсулине для перевода предшественников [c.390]

    Предшественник инсулина (проинсулин) состоит из одной полипептидной цепи. Следовательно, структуру инсулина кодирует 1 цистрон (транскриптон). [c.400]

    Пре-последовательность отличается от так называемой про-последовательности, под которой подразумеваются те дополнительные участки, которые имеются в белках, существующих в виде стабильных предшественников. В некоторых белках могут иметься и те и другие. Например, инсулин первоначально синтезируется как пре-проинсулин пре-последовательность отщепляется во время секреции, образуя проинсулин, который далее подвергается процессингу с превращением в зрелый инсулин. [c.128]

    Д. Предшественники пептидов, родственных инсулину. Структурная организация молекулы прогормона неспецифична для предшественника инсулина. Предшественники близкородственных инсулину пептидных гормонов (релаксина и инсулиноподобных факторов роста) имеют такую же организацию (рис. [c.252]

    L-T.-кодируемая заменимая аминбкислота. Входит в состав почти всех белков, в частности пепсина и инсулина. В животном организме необратимо образуется из фенилаланина. Из Т. в организме синтезируются ряд важных в-в тирамин и 3,4-дигидроксифенилаланин (предшественники катехоламинов), а также динодтирозин, из к-рого образуется гормон тироксин. [c.589]

    Чрезвычайно широкая распространенность Ф.-к. в тканях животных, растений и микроорганизмов определяется ключевой ролью фермента в образовании глюкозы из физиол. предшественника - пировиноградной к-ты. Количество фермента в тканях млекопитающих регулируется гормонами шюкагон увеличивает синтез Ф.-к., а инсулин - снижает. [c.140]

    Новый стратегический вариант синтеза инсулина появился как следствие открытия Штайнером [675] в 1967 г. проиисулина. При этом обнаружено, что биосинтез инсулина идет через одноцепочечный предшественник. В од- [c.264]

    Специфический протеолиз — удобный процесс для образования сложных белковых структур. Во многих случаях белки модифицируются путем расщепления одной или нескольких пептидных связей. Для обозначения этого типа катализируемых ферментами реакций, которые играют доминирующую роль во многих физиологических процессах [137—139], используются термины ограниченный протеолиз или специфический протеолиз (табл. 4.2). Хорошо известными примерами специфического расщепления полипептидов являются активация предшественников пищеварительных ферментов, морфогенетические процессы в бактериальных вирусах и каскадные процессы коагуляции и комплементного действия крови [138, 140]. Недавно было показано, что механизмы посттрансля-ционного расщепления имеют место также при образовании таких разных белков, как инсулин, коллаген и специфичные белки вирусов. Кроме того, высокоспецифичное протеолитическое расщепление ферментов важно при инактивации и активации специфических внутриклеточных ферментов (табл. 4.2). [c.72]

    Гормон инсулин имеет две пептидные цепи А (20 остатков) и В (30 остатков). Они получаются из одного белкового предшественника, препроинсулина, в котором 23 из его 108 аминокислот предшествуют пептиду и 35 соединяют -пептид с Л-пепти-дом. Молекула мРНК для этого белка имеет, таким образом, по крайней мере 327 нуклеотидов. [c.213]

    К настоящему времени субъединичная структура обнаружена у нескольких сотен белков. Однако только для немногих белков, в том числе для молекулы гемоглобина, методом рентгеноструктурного анализа расшифрована четвертичная структура . Основными силами, стабилизирующими четвертичную структуру, являются нековалентные связи между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности—универсальному принципу, свойственному живой природе. Структура белка после его синтеза в рибосоме может частично подвергаться модификации (посттрансляционный процессгшг) например, при превращении предшественников ряда ферментов или гормонов (инсулин). [c.71]


    Согласно современным представлениям, биосинтез инсулина осуществляется в 3-клетках панкреатических островков из своего предшественника проинсулина, впервые выделенного Д. Стайнером в 1966 г. В настоящее время не только выяснена первичная структура проинсулина, но и осуществлен его химический сгштез (см. рис. 1.14). Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка он лишен биологической, т.е. гормональной, активности. Местом синтеза проинсулина считается фракция микросом 3-клеток панкреатических островков превращение неактивного проинсулина в активный инсулин (наиболее существенная часть синтеза) происходит при перемещен проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 33 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пепти-да). Длина и первичная структура С-пептида подвержена большим изменениям у разных видов животных, чем последовательность цепей А и В инсулина. Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот при образовании молекулы проинсулина этот сигнальный пептид отщепляется специальной пептидазой. Далее молекула проинсулина также подвергается частичному протеолизу, и под действием трипсиноподобной протеиназы отщепляются по две основные аминокислоты с N- и С-конца пептида С—соответственно дипептиды Apr—Apr и Лиз— —Apr (см. рис. 1.14). Однако природа ферментов и тонкие механизмы этого важного биологического процесса—образование активной молекулы инсулина окончательно не выяснены. [c.268]

    Наиболее вероятной в настоящее время представляется мембранная локализация первичного действия почти всех белковых гормонов, включая инсулин. Получены доказательства существования специфического рецептора инсулина на внешней плазматической мембране почти всех клеток организма, а также образования инсулинрецепторного комплекса. Рецептор синтезируется в виде предшественника — полипептида (1382 аминокислотных остатка, мол. масса 190000), который далее расщепляется на а-и -субъединицы, т.е. на гетеродимер (в формуле со,— ,), связанные дисульфидными связями. Оказалось, что если а-субъединицы (мол. масса 135000) почти целиком располагаются на внешней стороне биомембраны, выполняя функцию связывания инсулина клетки, то -субъединицы (мол. масса 95000) представляют собой трансмембранный белок, выполняющий функцию преобразования сигнала (рис. 8.1). Концентрация рецепторов инсулина на поверхности достигает 20000 на клетку, и период их полужизни составляет 7—12 ч. [c.270]

    Как известно, участок ДНК, несущий информацию о синтезе индивидуального белка, называется геном, а участок, контролирующий синтез единственной полипептидной цепи и ответственный за него,— цистроном. Следовательно, если белок состоит из нескольких (более одного) полипептидов, то естественно предположить, что в синтезе такого белка должны участвовать несколько (более одного) цистронов. Это не всегда соответствует действительности, особенно если полипептидные цепи идентичны (например, а,- и р -цепи гемоглобина). Если, например, пептидные цепи какой-либо одной белковой молекулы являются неидентичными, то это не всегда означает, что они синтезируются как результат действия разных цистронов. Подобный белок может синтезироваться в виде единственной полипептидной цепи с последующими протеолитическими разрывами в одном или нескольких местах и отщеплением неактивных участков. Типичным примером подобной модификации является гормон инсулин, синтезирующийся в виде единого полипептида препроинсулина, который после ферментативного гидролиза превращается сначала в неактивный предшественник проинсулин, а затем в активный гормон инсулин, содержащий две разных размеров и последовательности полипептидные цепи (см. рис. 1.14). [c.532]

    Липофилизация инсулина достигалась в том случае, когда с тремя свободными аминогруппами инсулина был ковалентно связан диглицерид янтарной кислоты. Производное инсулина проявило сильные липофильные свойства, но плохую смачиваемость. Его подвергали анализу методом высокоэффективной жидкостной хроматографии, кругового дихроизма и светорассеяния в 10% растворе изопропанола, а также биологическому анализу in vitro на крысах-диабетиках. Третичная структура производного проверялась методом кругового дихроизма. Динамическим светорассеянием и просвечивающей электронной микроскопией (TDM) определяли спонтанную агрегацию частиц производного инсулина. Диаметр наименьших частиц, обнаруживаемых методом электронной микроскопии, составлял 10-15 нм. Результаты этих анализов позволили разработать схематическое изображение синтезированного предшественника инсулина. Эти методьт анализа могут быть использованы для быстрого изучения и разработки схематического изображения новых производных инсулина. [c.408]

    Процессинг инсулина нз предшественников (про- и препроннсулина) происходит в результате  [c.546]

    Помимо образования из предшественника 1-М0Р имеет и другие общие с гормонами свойства он обладает существенной структурной гомологией с инсулином и релаксином, а также проявляет неподавляемую инсулиноподобную активность (М81ЬА). Очевидно, имеется эволюционная связь с этими пептидными гор.монами. [c.326]

    Образование и созревание гормонов. Эти процессы связаны с различными внутриклеточными механизмами. Предшественниками гормонов могут быть стероиды, ароматические аминокислоты или белки. Некоторые гормоны синтезируются в активном состоянии, для других необходимо постсинтетиче-ское созревание. К первым относятся кортикостероиды, ко вторым — белковые гормоны, например инсулин, который синтезируется в виде белка-предшественника проинсулина, а затем превращается в активный инсулин. Прогормоны после завершения их синтеза, как правило, локализуются в секреторных гранулах и по мере надобности ферментативным путем превращаются в активные гормоны. Активация гормонов возможна и в периферических тканях. Например, гормон щитовидной железы тироксин в печени превращается в более активный 3-иод-тиронин. [c.133]

    Биосинтез. У животных и человека инсулин синтезируется в р-клетках островков Лангерганса. Гены, кодируюшие этот белок у человека, локализованы в коротком плече 11-й хромосомы. Зрелая инсулиновая мРНК состоит из 330 нуклеотидов, что соответствует 110 аминокислотным остаткам. Именно такое их количество содержит предшественник инсулина — препроинсулин. Он состоит из одной полипептидной цепи, на Л -конце которой находится сигнальный пептид (24 аминокислоты), а между А- и В-цепями локализован С-пептид, содержащий 35 аминокислотньгх остатков. [c.165]

    Биосинтез. Глюкагон, подобно многим биологически активным пептидам, синтезируется в виде более крупного предшественника — проглюкагона. Созревание гормона происходит в аппарате Гольджи, после чего он секретируется в кровь по механизму, подобному для инсулина. Освобождение глюкагона регулируется глюкозой по принципу обратной связи. Увеличение концентрации глюкозы в крови подавляет секрецию, а дефицит ее стимулирует выброс глюкагона в кровяное русло. [c.167]

    Многие гормоны синтезируются в виде предшественников — прогормонов. В виде прогормонов образуются инсулин, паратгормон, липотропин и другие белки. Функциональная роль дополнительной последовательности амииокислот у предшественников гормонов, по-видимому, в каждом случае своя. Например, наличие С-пепТида в проинсулине необходимо для правильной укладки в пространстве молекулы в процессе ее биосинтеза, для замыкания соответствующих дисульфидных Связей между будущими цепями А и В инсулина. Значительные размеры С-пептида связаны с тем, что он должен увеличивать растворимость синтезированной молекулы инсулина. После того как вновь синтезированная молекула лроиисулина из-за высокой растворимости диффундирует в цистерны аппарата Гольджи, там происходит отщепление С-пептида ферментом трипсинового типа и образуется уже окончательная форма молекулы — биологически активный инсулин. [c.247]

    В частности, в СССР получены бактериальные штаммы, способные продуцировать проинсулин человека — биосинтетический предшественник инсулина. ГТроинсулии состоит из одной полипептидной цепи длиной 86 аминокислотных остатков и может быть превращен [c.381]

    ПРОИНСУЛИН, белок — предшественник инсулина. Молекула включает 81—86 аминокислотных остатков (в зависимости от вида животного) мол. м. 9000. На N-конце молекулы располагается В-цепь инсулина, на С-конце — А-цепь. Цепи инсулина соединены т.н. С-пептидом, построенным из 27—33 аминокислотных остатков. Общая схема строения молекулы НзМ—В-цепь—Арг—Арг—С-пеп-тид—Лиз—Лиз—А-цепь—СООН (буквенные обозначения см. в ст. а-Аминокислоты). Видовые различия в П. наиб, выражены на участке С-пептида. П. обеспечивает правильное замыкание дисульфидных связей при образовании двухцепочечной структуры инсулипа. Превращ. П.- в инсулин в 0-клетках островков поджелудочной железы осуществляется специфическими ферментами, при этом от П. отделяется С-пептид. [c.480]

    Основное внимание мы будем уделять тем белкам, структура которых в ативном состоянии была (расшифровала с 1по мощью рентгеноструктурного анализа лизоциму, рибонуклеазе, миоглоби-ну, гемоглобину и инсулину. Некоторое внимание будет уделено трипсину, химотрипсину и их предшественникам, а также цитохрому, для которых структура известна частично или, по крайней мере, определена последовательность аминокислот. В основном исследования выполнялись с помощью протонного магнитного резонанса, но ограниченное применение в специальных исследованиях получил и ЯМР других ядер ( Р, Р, и др.). [c.348]

    Научные работы относятся к биохимии и молекулярной биологии. Выполнил основополагающие исследования по выделению первого регуляторного белка, управляющего активностью лактозного гена (оперена), по изучению механизма специфического взаимодействия белков и ДНК, по установлению первичной структуры ряда ДНК, а также по клонированию гена— предшественника инсулина — и синтезу этого белка в бактериальной клетке. Совместно со своим сотрудником А. Мэксемом расщепил (1973) ДНК кишечной палочки посредством фермента — дезоксирибонуклеазы и выделил определенный участок (лак —оператор), который оказался двухцепочечным фрагментом, состоящим из 25 комплементарных пар оснований. Совместно с тем же сотрудником предложил (1977) один из удачных методов расшифровки первичной структуры ДНК, базирующийся на принципе локализации оснований по величине соответствующих фрагментов ДНК. [c.141]

    Некоторые полипептидные гормоны, в том числе инсулин и глюкагон, синтезируются в клетках эндокринных желез сначала в виде неактивных предшественников, или прогормонов. Такие неактивные предшественники имеют более длинные полипептидные цепи, чем соответствующие активные гормоны. Примером может служить проинсулин (полипептидная цепь которого содержит приблизительно 80 аминокислотньк остат- [c.782]

    Инсулин синтезируется В- или р-клет-ками поджелудочной железы в виде неактивного предшественника. Непосредственным предшественником инсулина является ироинсулин - одноцепочечный полипептид, содержащий в зависимости от вида животного от 78 до 86 аминокислотных остатков (рис. 25-17). Проинсулин из поджелудочной железы крупного рогатого скота состоит из 81 остатка [c.797]

    Некоторые полипептидные гормоны, а именно инсулин и глюкагон синтезируются в виде неактивных предшественников, полипептидные цепи которых длиннее цепей самих активных гормонов. Образование прогормона дает то преимущество, что, будучи неактивным, прогормон может запасаться в большом количестве в секреторных гранулах и быстро активироваться в ответ на соответствующий сигнал путем ферментативного расщепления. [c.1000]

    Полиеновые жирные кислоты — линолевая и линоленовая не синтезируются, а поступают с пищей (незаменимые). Остальные — полиненасыщенные — синтезируются из них. Особенно важен синтез арахидоновой кислоты, являющейся предшественником эйкозаноидов. Скорость синтеза жирных кислот регулируется кратковременными и долговременными механизмами контроля. Кратковременная регуляция осуществляется аллостерически на уровне аце-тил-КоА-карбоксилазы (цитрат — активатор, пальмитат и другие жирные кислоты — ингибитор). Долговременная регуляция осуществляется через синтез ферментов и их деградацию при участии гормонов. Инсулин активирует ацетил-КоА-карбоксилазу путем дефосфорилирования фермента (кратковременно) и способен вызывать долговременную индукцию синтеза фермента. Глюкагон и адреналин оказывают противоположное действие. [c.224]

    С помощью бактерий были получены с высоким выходом некоторые белки — продукты генов животных и-их вирусов. Так,,, были созданы штаммы Е. соИ, у которых 20% всего- клеточного белка составляли коровый антиген вируса гепатита В, гор -МОН роста человека или главный капсидный антиген вируса ящура. У одного из сконструированных штаммов В. suhtblis-последний составлял около 1% синтезируемого этой бактерией белка. Однако добиться экспрессии в бактериальных клетках генов некоторых белков животных или их вирусов совсем непросто, даже если эти гены сопряжены с сигналами инициации транскрипции и трансляции, которые обеспечивают в норме-высокий уровень экспрессии генов прокариот. Причины такой. неэффективной экспрессии не всегда ясны, но в некоторых случаях удалось установить, что протеазы бактерий быстро разрушают белки животных и вирусов. В подобных ситуациях можно повысить выход, применяя несодержащие протеаз мутанты.. При выработке проинсулина, предшественника инсулина, неко торая защита от протеаз обеспечивается тем, что полипептид, секретируется в периплазматическое пространство у клеточной стенки Е. oll. На N-конце молекулы препроинсулина находится последовательность гидрофобных аминокислот, с помощью которой (с одновременным ее отщеплением) осуществляется транспорт этой молекулы через мембрану в периплазм [c.319]

    В 50-е годы раскрыт один из наиболее сложных процессов — синтез холестерина, который является не только компонентом клеточных мембран и липоидов плазмы крови, но и предшественником в синтезе биологически активных стероидов, в том числе гормонов-анаболиков. За это открытие американский ученый К. Блок, немецкий ученый Ф. Линнен и английский ученый Дж. Корнфорд в 1961 г. были удостоены Нобелевской премии. В 1953 г. Дж. Уотсоном и Ф. Криком была определена структура нуклеиновых кислот, что положило начало расшифровке генетического кода. Эти авторы также были удостоены Нобелевской премии, ф. Сенджером расшифрована первичная структура гормона инсулина, что дало возможность синтезировать его и использовать в медицинской практике. В 1957 г. американский ученый Е.В. Сазерленд открыл универсальный передатчик действия гормонов и медиаторов на внутриклеточные процессы — [c.13]

    Впоследствии был испытан альтернативный метод синтезировали ген молекулы-предшественника, проинсулина, который и вводили в Е. oli. После очистки проинсулина его расш епля-ли трипсином и i -карбоксипептидазой и получали нативный инсулин. [c.337]

    В противоположность растениям в животных организмах фенольные соединения встречаются в очень незначительных количествах, и известно лишь небольшое число структурных типов таких фенолов. Наиболее важным фенолом является незаменимая аминокислота тирозин — универсальный компонент животных, растительных и бактериальных белков. У животных тирозин является предшественником меланина фармакологическое значение его состоит в том, что он вместе с фенилаланином является предшественником нейрогуморальных веществ — норадреналина и адреналина. Структура тирозина лежит в основе тиреоидиых гормонов, представляющих собой иодсодержащие фенолы и являющиеся продуктами деятельности щитовидной железы. Кроме того, тирозин встречается в ряде пептидных гормонов, например в инсулине, глюкагоне и в некоторых известных нейрогипофизарных гормонах, таких, как окситоцин и вазопрессин. Третий основной класс биологически активных фенолов — это гидроксилированные индоламины, например 5-ОТ, образующийся из триптофана. [c.358]

    Инсулин образуется из своего предшественника— проинсулина, который синтезируется в клетках ост ровков Лангерганса поджелудочной железы (см. Про-инсулин). [c.275]


Смотреть страницы где упоминается термин Инсулин, предшественники: [c.252]    [c.224]    [c.104]    [c.263]    [c.265]    [c.224]    [c.555]    [c.144]    [c.799]   
Общая органическая химия Т.10 (1986) -- [ c.195 , c.555 ]




ПОИСК





Смотрите так же термины и статьи:

Инсулин

Инсулинома



© 2025 chem21.info Реклама на сайте