Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы псевдоожиженные в плотной фазе

    Псевдоожиженную плотную фазу можно рассматривать как невязкую капельную жидкость, постулируя, что для каждой частицы, сила трения газового потока в любой момент времени уравновешивается силами тяжести и инерции (таким образом, из рассмотрения исключаются соприкосновение частиц и касательные напряжения ). Если по каким-либо причинам псевдоожижение нарушается, плотную фазу в аспекте ее текучести следует рассматривать как механическую систему отдельных твердых частиц. Свойства этой системы следует выражать в зависимости от таких характеристик текучести, как когезионный фактор, угол внутреннего трения и срезающие усилия. [c.567]


    Как и ожидалось, расход газа при истечении из насадка меньше, чем из отверстия. Следовательно, профилированные насадки могут на практике служить средством повышения относительной доли твердого материала при истечении псевдоожиженной плотной фазы. Из табл. XV-2 видно также, что при использовании насадков большей длины и поперечного сечения система при истечении менее склонна к сегрегации твердых частиц и ожижающего агента она лучше корреспондирует с равенством (XV,13). При тех же условиях значение QJ Qe + j) в случае отверстий значительно выше и ближе соответствует равенству (XV,14). [c.583]

    Движение псевдоожиженной плотной фазы в вертикальных трубах характеризуется фазовой диаграммой Для системы твердые частицы — ожижающий агент и рабочей диаграммой процесса Возможно несколько видов движения в зависимости от того, перемещаются ли твердые частицы относительно ожижающего агента прямотоком или противотоком, в направлении или противоположно действию гравитационных сил, свободно или с [c.585]

    Физическая модель. Псевдоожиженный слой в реакторе рассматривается как двухфазная система, состоящая из плотной фазы в виде взвеси, образованной из твердых [c.120]

    Надежных данных о свойствах расширенной плотной фазы в системах газ — твердые частицы очень мало Опубликована работа по однородному псевдоожижению очень мелких твердых частиц воздухом при атмосферном давлении. Установлено что при псевдоожижении катализаторов крекинга нефти (диаметр частиц 55 мкм, плотность 0,95 г/см ) воздухом под атмосферными давлением => 2,8 и в указанном диапазоне справедливо [c.53]

    В диапазоне псевдоожиженного состояния (от до о)в) существует определенная равновесная зависимость между концентрацией твердого материала над слоем (в разбавленной фазе) и скоростью ожижающего агента [103, 247, 758]. Это равновесие рассматривается некоторыми авторами [758] в связи с зависимостью порозности системы от скорости газа. Если в сосуд, содержащий разбавленную фазу, при неизменной скорости газа вводить дополнительное количество твердых частиц, то величина е будет уменьшаться до некоторой определенной величины, после чего избыток твердого материала выпадает на распределительную решетку в виде плотной фазы псевдоожиженного слоя. Это явление характерно для насыщения паровой фазы и конденсации избыточного количества паров. [c.380]


    Определению влияния параметров системы на форму кривых отклика посвящено весьма небольшое число работ. К сожалению, при попытках применить такой подход к псевдоожиженному слою возникают трудности. Кроме того, в большинстве случаев необходимо знать не только время пребывания жидкости (газа) в слое, но и характер подачи, т. е. наблюдалось ли перемещение по слою в виде пузыря, или большую часть времени газ (жидкость) фильтровался через плотную фазу. Для ответа на вопросы такого рода метод функции отклика, основанный на интегральном распределении времени пребывания газа в слое, по-видимому, мало приемлем. [c.158]

    Рассмотрим вертикальный пневмотранспорт по линии из примера ХП-И. Твердые частицы, которые должны транспортироваться вверх, подаются в поток газа у нижнего конца трубы длиной 10 м. Найти потери давления и сравнить их с соответствующим перепадом для плотной фазы псевдоожиженной системы прп 8 = 0,5. [c.339]

    Для плотной фазы псевдоожиженной системы, где падение давления в трубе определяется, главным образом, статическим напором, имеем  [c.339]

    Другой особенностью процесса массопереноса в псевдоожиженном слое является то обстоятельство, что диффузия целевого компонента в этой физической системе происходит не в однофазном потоке газа, а в плотной фазе псевдоожиженного слоя, кото- [c.184]

    Вторая задача, которая должна быть решена в рамках теорий процессов переноса в псевдоожиженном слое, заключается в описании движения газовой и твердой фаз слоя, а также процессов тепло- и массообмена между фазами на основе системы уравнений переноса для псевдоожиженного слоя. Основные результаты, полученные к настоящему времени в этой области, касаются исследования устойчивости однородного псевдоожиженного слоя, движения пузырей в псевдоожиженном слое и массообмена между газовыми пузырями и плотной фазой слоя. Изложению этих вопросов были посвящены третья, четвертая и пятая главы данной книги-. Следует отметить, что такие вопросы, как, например, образование газовых пузырей в псевдоожиженном слое не имеют удовлетворительного решения. Сравнительно мало изученным является вопрос о влиянии газораспределительного устройства на структуру псевдоожиженного слоя. [c.252]

    Наиболее распространены установки каталитического крекинга с псевдоожиженным катализатором, работающие по схеме с нисходящим потоком, называемой так потому, что плотная фаза катализатора удаляется с низа реакторов для циркуляции в другие части системы. На одном из последних образцов установок этого типа катализатор и пары исходного сырья поступают вместе в нижнюю часть реактора и образуют достаточно плотную турбулентную фазу, которая и представляет собой зону реакции. Поток отработанного катализатора непрерывно выводится из плотной фазы, после удаления оставшихся углеводородных паров проходит через регулирующий клапан, подхватывается встречным потоком воздуха и по подъемному трубопроводу переносится в регенератор, где выжигание кокса происходит в плотной фазе катализатора. Горячий регенерированный катализатор в виде плотной фазы выводится из регенератора и смешивается с сырьем перед подачей его в реактор. В реактор может быть подано до 20 кг катализатора на 1 кг нефтяного сырья. Средняя продолжительность пребывания катализатора в реакторе от 2 до 20 мин. [c.396]

    В работе [106] модель, использованная в [184], модифицирована для случая неоднородного псевдоожиженного слоя. Модель являлась развитием двухфазной теории [123] течения газа через псевдоожиженный слой. Каталитические частицы рассматривались в качестве отдельной фазы. Предполагалось, что температура частицы и концентрация реагента внутри нее зависят от времени пребывания частицы в системе. В отличие от [184] в работе [106] рассматривался реактор непрерывного действия по катализатору с непрерывным вводом и выводом частиц твердой фазы. Исследовано два предельных случая, в одном из которых газ в плотной фазе слоя считался идеально перемешенным, в другом рассматривался режим идеального вытеснения в газе плотной фазы. Во всех случаях газ в разбавленной фазе слоя (фаза пузырей) считался движущимся в режиме идеаль- [c.157]

    НИЖНИХ сечениях, постепенно ослабевает по высоте. Частицы попадают в канал струи в результате сползания слоев сыпучего материала по поверхностям, определяемым эффективными локальными значениями угла откоса. Это движение частиц вблизи каверны даже при значительных числах псевдоожижения слоя = 2,2 для крупных частиц) существенно отличается от движения частиц в истинно псевдоожиженной системе, поскольку граничные с факелом участки плотной фазы слоя обеднены газом вследствие его оттока в струю. Если число псевдоожижения не слишком велико, то такой инжекции вполне достаточно, чтобы локальная скорость газа в указанных участках существенно понизилась и стала равной (или даже меньше) начальной скорости псевдоожижения. В результате плотность упаковки частиц вблизи каверны значительно возрастает, система по характеру движения приближается к неподвижной сыпучей среде, а интенсивность движения начинает существенно зависеть от эффективной вязкости дисперсной фазы. Характерные траектории движения частиц в ближайшей окрестности струи и ее канале можно получить путем киносъемки течения полуограниченной струи. Типичная траектория частицы при подходе ее к границе струи и движении вдоль границ факела показана на рис. 1.8. [c.20]


    Работа установок зависит от способа транспорта катализатора (пневмотранспорт в разреженной фазе пневмотранспорт в плотной фазе транспорт механическими устройствами). Наиболее широко в промышленности распространен транспорт в разреженной фазе. Система транспорта состоит из дозатора, пневмотранспортной трубы и сепаратора (ри.. 3.32). Дозер (рис. 3.33) предназначен для смешения катализатора с транспортирующим газом и регулирования количества циркулирующего катализатора. Основной поток воздуха, нагретого смешением с дымовым газом до 550 °С, равномерно распределяется по сечению пневмоподъемника с помощью выравнивателя — конусной вставки. Вспомогательный поток воздуха ( 20 % общего расхода) захватывает частицы шарикового катализатора и направляет их при псевдоожижении к входному отверстию пневмоподъемника, где они подхватываются основным потоком воздуха и транспортируются вверх. Изменением расхода воздуха во [c.86]

    На рис. V- представлены две разновидности поршневого псевдоожиженного слоя. В слое типа А, свойства которого рассматриваются в данной главе, газовый пузырь поднимается в среде твердых частиц, опускающихся по обеим его сторонам (рис. Л,А). Коалесцируя выше распределительной решетки, пузыри образуют пробки, поднимающиеся с равномерными интервалами и разделяющие весь слой на чередующиеся участки плотной и разбавленной фаз. Такое поведение псевдоожиженного слоя аналогично поведению системы газ — жидкость, и ниже будет показано, что основные поло жения теории таких систем применимы и к псевдоожиженному слою. [c.170]

    В работе [62] разработана конструкция холодильника большой мощности на основе принципа фонтанирующего слоя. Используется система со множеством фонтанов в большом прямоугольном аппарате с перфорированным основанием. Скорость потока охлаждающего воздуха, который поступает в слой через перфорированное основание, достаточна, чтобы образовать локальные фонтаны над каждым отверстием. При этом обеспечивается восходящее движение твердой фазы в разреженном потоке и нисходящее движение в плотном слое в кольце для каждого из фонтанов. Слой в этих условиях отличается от многостадийного фонтанирующего слоя Петерсона (описанного в главе 12), так как между отдельными фонтанами нет перегородки, и напоминает скорее обычный кипящий спой. Однако при рабочей скорости потока многостадийный фонтанирующий слой, описанный выше, является значительно более плотным и лучше организованным, чем обычный псевдоожиженный слой [62], где нри наличии крупных частиц воздух, выходящий из каждого отверстия, образует большие пу- [c.210]

    Движение псевдоожиженных твердых частиц может происходить через отверстия в стенках аппарата или по вертикальным трубам, связывающим его с рядом стоящими аппаратами. В зависимости от того, происходит ли истечение из отверстий в свободное пространство или в другие псевдоожиженные слои, говорят о свободном или затопленном истечении. Во втором случае два соседних слоя могут находиться в общем сосуде частицы и газ будут перераспределяться между слоями в соответствии с перепадом давлений, устанавливающимся в зависимости от высоты слоев по разные стороны разделяющей перегородки. При движении плотной фазы твердых частиц по вертикальным трубам, связанным с аппаратами для псевдоожижения, мы имеем дело с движущимися псевдоожиженными системами их результирующая скорость относительно стенок сосуда отлична от нуля, а перепад давления — постоянен. Примеры движения псевдоожиженной плотной фазы через отверстия или по вертикальным трубам легко найти в нефтеперерабатывающей промыш.ген-ности циркуляция катализатора между реактором и регенераторо.ч в установках каталитического крекинга. [c.568]

    Восходящий и нисходящий потоки в плотной фазе могут быть также осуществлены в компактном (непсевдоожиженном) слое. Если поддерживать скорость восходящего газового потока ниже величины, отвечающей точке В (скорость начала псевдоожижения), то твердый материал может перемещаться вниз компактным слоем — соответственно кривой типа 5Г на рис. 1-4. Точка 5 отображает состояние системы, когда восходящий газовый поток не может далее двигаться через просветы между частицами нисходящего слоя без образования пузырей, так что слой твердых частиц в трубе должен перейти в псевдоожиженное состояние. Восходящий поток твердых частиц в компактном (непсевдоожиженном) состоянии может быть получен при скоростях, превышающих скорость начала псевдоожижения (точка В на рис. 1-4), путем торможения движения частиц с помощью диафрагмы, клапана или [c.22]

    Псевдоожижение в плотной фазе обычно ассоциируется с неоднородными системами, возникающими при использовании газов в качестве ожижающего-aieuma. Для жидкостного псевдоожижения характерны плавное расширение слоя и монотонное увеличение порозности от mf до 1 — в диапазоне от скорости начала псевдоожижения Umf до скорости витания Uf. В случае псевдоожижения газами расширение слоя ограничено и при скоростях, превышающих Umf, появляется фаза пузырей, выделяющихся из плотной фазы и практически не содержащих твердых частиц. С возрастанием скорости газа объем плотной фазы изменяется незначительно, но перемешивание в слое становится более-интенсивным и количество газа, проходящего через слой в виде пувырей, повышается. [c.567]

    Стокель также изучал истечение псевдоожиженной газом плотной фазы из насадков, но цель его работы состояла, прежде всего, в определении высокоэффективных (энергетических) профилей потока, а не в изучении истечения псевдоожиженных систем из аппаратов. В результате были выявлены сходство и различия в движении газа и его смеси с твердыми частицами в устройствах разного живого сечения, а также учтены изменения плотности газа и порозности псевдоожиженной системы в направлении движения твердого материала. [c.583]

    Р1спользовалась полидисперсная система мелких частиц со скоростью начала псевдоожижения г яг 0,49 см/с вплоть до скорости псевдоожижения Уо 0,73 см/с слой оставался однородным. Напомним, что — скорость в промежутках между частицами. В трехмерный слой инжектировался заполненный трасером газовый пузырь. В момент ввода пузыря концентрация трасера в плотной фазе слоя была равна нулю. На различных высотах подъема пузыря производился отбор проб из него с последующим анализом концентрации трасера. Коэффициент массообмена определялся затем при помощи (5). Использовалось четыре различных трасера метан, этан, этилен и пропан. Первый из них обладает слабой адсорбционной способностью, последний сильно адсорбируется на твердых частицах. [c.130]

    Анализ реальных систем показывает, что числа Пекле, определенные по радиусу области циркуляции и эффективному коэффициенту диффузии в плотной фазе слоя, могут быть в одних случаях велики (например, в системе газ (воздух, СОг, На, Не)—крупные твердые частицы (катализатор крекинга, стеклянные шарики), а в других малы (например, в системе воздух—глинозем). Вследствие этого массообмен пузыря со средой в реакторе постоянного сечения исследуется ниже как для больших, так и для малых чисел Пекле. Влияние переменного сечения реактора на массообмен исследовано для больших чисел Пекле, а влияние объемной реакции на нестационарный массообмен— для чисел Пекле Ре 1. Установившаяся скорость подъема пузыря считается превышающей скорость псевдоожижения, что имеет место в большинстве практических приложений. В этом случае пузырь вместе с прилегающей областью, занятой двухфазной системой, окружен непронйцаемой для жидкой фазы поверхностью тока (см. параграф 4), и задача сводится к определению полного потока вещества на эту поверхность. (Несколько иная ситуация может возникнуть в слое переменного сечения этот случай будет рассмотрен отдельно). [c.67]

    Уплотнение. Вибрационное воздействие на сыпучие материалы при интенсивности колебаний % <С 1 приводит к псевдоожижению дисперсной системы и ее уплотнению (см. разд. 1.3) вследствие разрушения арок, сводов, ликвидации пустот. Повышение относительной подвижности частиц способствует дегазации материала, более плотной и регулярной укладке частиц твердой фазы. Для предотвращения виброкинения эффективным средством является приложение к дисперсной системе стационарного усилия, например, в виде статического давления груза, прессующего давления, центробежного поля- и т. п. Введение ПАВ в состав уплотняемого материала повышает эффективность применения вибрации. [c.199]


Смотреть страницы где упоминается термин Системы псевдоожиженные в плотной фазе: [c.345]    [c.48]   
Псевдоожижение (1974) -- [ c.603 ]




ПОИСК





Смотрите так же термины и статьи:

Фазы системы



© 2025 chem21.info Реклама на сайте