Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции химические управляемые

    Под математической моделью (математическим описанием) понимается совокупность математических зависимостей, отражающих в явной форме сущность химического процесса и связывающих его физико-химические, режимные и управляющие параметры с конструктивными особенностями реактора. В общем случае математическая модель химического реактора должна состоять из кинетических уравнений, описывающих зависимость скорости отдельных реакций от состава реагирующих веществ, температуры и давления, из уравнений массо-теплообмена и гидродинамики, материального и теплового балансов и движения потока реагирующей массы и т. д. [c.7]


    Этот взгляд на катализ сохраняется и сегодня. Он помог объяснить механизм действия белковых катализаторов (или ферментов), управляющих химическими реакциями в живых тканях .  [c.115]

    В теоретических работах [57—60], посвященных выявлению классов химических реакций на основе модельных кинетических схем, показана возможность повышения эффективности каталитических процессов, протекающих при периодически меняющихся управляющих параметрах. В связи с этим возникают задачи циклической оптимизации, тесно связанные с традиционной теорией оптимального управления. Основной целью решения таких [c.287]

    Для нормальной работы трехкомпонентного нейтрализатора необходима обратная связь между качеством отработавших газов и системой питания двигателя. Такая связь должна поддерживать уровень расхода воздуха примерно 14,6 кг на 1 кг сожженного бензина. При богатой смеси (а<1,0) резко увеличивается неполнота сгорания, а при бедной смеси (а>1,0), как сказано выше, возможно образование аммиака с появлением резкого запаха отработавших газов. Эту связь обеспечивает электронная схема регулирования с помощью так называемого кислородного датчика, измеряющего мгновенное содержание свободного кислорода в отработавших газах. Датчик монтируется на корпусе нейтрализатора и имеет слой оксида циркония или титана, покрытого платиной (датчик Ъ>). Такая электрохимическая ячейка реагирует на атомы кислорода и создает разность потенциалов до одного вольта. Эта разность потенциалов и служит управляющим сигналом, заставляющим электронный модуль изменять подачу топлива в двигатель до тех пор, пока в отработавших газах не останется свободного, то есть не вступившего в химическую реакцию, кислорода. Таким образом, автоматически поддерживается стехиометрический состав рабочей смеси во всех диапазонах нагрузок и частот вращения коленчатого вала двигателя. Такие трехкомпонентные нейтрализаторы при соответствующем финансировании могут производиться в России в количестве, необходимом для оснащения всех выпускаемых в стране автомобилей. [c.337]

    Влияние скорости потока на скорость химической реакции можно также использовать для определения преобладающего режима. В химически управляемом режиме изменение скорости потока не влияет на скорость химической реакции. В гидродинамическом режиме скорость реакции зависит от скорости тепло-и массопередачи, которые, в свою очередь, зависят от скорости потока. [c.145]

    Радиационный захват нейтрона устойчивыми ядрами является важной ядерной реакцией, которая часто приводит к образованию полезных радиоизотопов. Активный изотоп, получаемый в этой реакции, химически тождественен с материалом мишени. 0 обстоятельство часто обусловливает серьезные ограничения в полученной активности. Реакция Сциларда-Чалмерса, которая приводит к отделению активных атомов от материала мишени в силу отдачи кванта, может быть использована при благоприятных условиях для повышения активности материала. В настоящей статье обсуждаются некоторые факторы, управляющие этим процессом обогащения, и в особенности влияние интенсивного поля излучения цепного котла. [c.230]


    В то же время имеются теоретические работы, посвященные выявлению классов химических реакций на основе модельных кинетических схем, для которых доказывается возможность повысить эффективность каталитических процессов, протекающих при периодически меняющихся управляющих параметрах. В связи с этим возникают задачи циклической оптимизации, тесно связанные с традиционной теорией оптимального управления и в то же время обладающие рядом существенных особенностей, о которых будет сказано ниже. Основной целью решения таких задач является получение периодических режимов, которые значительно повышали бы эффективность процесса по сравнению с оптимальными стационарными показателями. Но, прежде чем перейти к строгой постановке и решению задач циклической оптимизации, рассмотрим для наглядности пример [31] механизма каталитического процесса, иллюстрирующий эффективность искусственно создаваемого нестационарного режима. [c.41]

    Комплексообразование, очевидно, следует общим законам, управляющим химическими реакциями, и изменение условий заметно влияет на равновесие, скорость реакции и эффективность разделения. К другим важным параметрам относятся структура и молекулярный вес органи-. ческого вещества. [c.203]

    Для выявления механизма мембранного переноса и целенаправленного синтеза мембран необходимо установить возможные состояния мембранной системы и их взаимные переходы при различных значениях управляющего параметра а. В качестве управляющего может быть использован любой параметр, вызывающий возмущение в системе, отклонение ее от исходного равновесного или устойчивого стационарного состояния. Поскольку основным неравновесным процессом являются химические реакции, естественно в качестве управляющего параметра использовать величины, влияющие на состав реагентов в каждой точке мембраны. Обычно используют концентрации переносимого компонента на границах мембраны в газовой фазе (С ) или (С/)", изменение которых влияет на приток или отток реагентов и вызывает возмущение как в распределенной системе в целом, так и в локальной области мембраны. [c.30]

    В общем случае составляющие критерия оптимальности зависят от всех факторов, управляющих свойствами катализатора химического состава, структуры пор и размера и формы частиц. Строгое решение задачи оптимального подбора катализатора с отысканием глобального максимума критерия по всем факторам должно производился по уравнениям математической модели процесса с учетом режима эксплуатации катализатора, поскольку последний существенно влияет не только на кинетику химической реакции, но и на общую длительность работы катализатора, частоту и длительность его регенерации. При этом еще надо учитывать концентрации целевого и побочного продуктов реакции в катализате, поскольку это отражается на расходах по стадиям выделения и очистки целевого про- [c.188]

    Управляющее уравнение описывает эволюцию в целом, включая флюктуации, причем явная форма W(x/x ) отражает свойства конкретной системы. Во многих случаях, как, например, в химических реакциях, переменная X принимает только целое значение, в других — как в броуновском движении — она может пробегать непрерывный ряд значений. [c.38]

    Когда управление ведется температурой теплоносителя, что особенно интересно при решении практических задач проектирования, и управляющее воздействие входит только в одно из уравнений системы (VII, 283)—уравнение теплового баланса реактора, возникает задача 8, приведенная выше. Для сравнения с результатами, получающимися, если обеспечить оптимальные температурные условия для химической реакции, можно рассмотреть задачу с использованием в качестве управляющего воздействия температуры реагирующей смеси. При этом система уравнений (VII, 283) может приниматься как система уравнений материальных балансов реагентов, куда температура входит через константы скорости реакции. .  [c.357]

    С другой стороны, имеются весьма веские подтверждения химической природы комплексообразования. К числу их относится прежде всего тот факт, что комплексообразование подчиняется законам, управляющим химическими реакциями, в частности закону действующих масс, а также то, что изменение условий комплексообразования (температура, концентрация) влияет на равновесие, скорость образования комплекса, эффективность разделения и т. д. Ускорение комплексообразования при добавлении активаторов позволяет провести аналогию с ускорением химических реакций при подаче катализаторов. [c.25]

    Подавляющее большинство химических реакций, которые применяются в гравиметрических, титриметрических и многих физико-химических методах анализа, протекает в растворе. Это реакция кислотно-основного взаимодействия, комплексообразования, осаждения малорастворимых соединений и т. д. Закономерности, управляющие протеканием этих реакций, являются наиболее важной составной частью теоретических основ химических (гравиметрических и титриметрических) и некоторых физико-химических методов анализа. Поэтому изложение теоретических основ аналитической химии начинается с рассмотрения процессов в растворе. Теоретические основы оптических и других физикохимических методов анализа будут рассмотрены позднее. [c.22]


    Начало систематических исследований скорости химических превращений положено работами Н. А. Меншуткина в конце 70-х годов XIX в. Е 80-х годах Я. Вант-Гофф и С. Аррениус сформулировали основные законы, управляющие протеканием простых химических реакций, и дали трактовку этих законов, исходя из молекулярно-кинетической теории. Дальнейшее развитие этих работ привело к созданию в 30-х годах XX в. Г. Эйрингом и М. Поляни на базе квантовой механики и статистической физики теории абсолютных скоростей реакций, открывающей перспективы расчета скоростей простых (элементарных) реакций, исходя из свойств реагирующих частиц. [c.3]

    Аналогичным образом можно проанализировать поведение химически реакционноспособных систем, которые описываются кинетическим потенциалом D (см. выше) с S-образными характеристиками по некоторому параметру д , например сродству А брутто-реакции (рис. 18.3). В ряде случаев такие системы способны к скачкообразным переходам между двумя устойчивыми состояниями при изменении управляющего параметра а вследствие скачкообразного изменения потенциальной функции d P= dD. Иногда говорят, что такие системы обладают триггерными свойствами (т. е. свойствами переключателя). [c.373]

    Прежде чем приступить к обсуждению закономерностей, управляющих развитием реакции, остановимся на самом понятии скорости химической реакции. [c.139]

    Химия изучает вещества и их превращения. Свойства веществ опреде.пя-ются атомным составом и строением молекул или кристаллов. Химические превращения сводятся к изменению атомного состава и строения молекул. Поэтому понимание химических процессов невозможно без знания основ теории строения молекул и химической связи. Число известных химических соединенш имеег порядок миллиона и непрерывно возрастает. Число же возможных реакций между известными веществами настолько велико, что вряд ли можно надеяться на описание их всех в обозримом будущем. Поэтому так важно знание общих закономерностей химических процессов. Термодинамика позволяет предсказать направление процессов, если известны термические характеристик, веществ — теплоты образования и теплоемкости. Для многих веществ этих данных нет, но они могут быть с высокой точностью оценены, если известно строение молекул или кристаллов, если известна связь между термодинамическими и структурными характеристиками веществ. С другой стороны, статистическая термодинамика позволяет рассчитывать химическое равновесие по молекулярным постоянным частотам колебаний, моментам инерции, энергиям диссоциации молекул и др. Все эти постоянные могут быть найдены спектральными и другими физически.ми методами или рассчитаны на основе теоретических представлений, но для этого надо знать основные законы, управляющие движением электронов в атомах и молекулах, и строение молекул. Это одна из важных причин, почему мы должны изучать строение молекул и кристаллов, теорию химической связи. [c.5]

    В XIX столетии такое отождествление химического предприятия с лабораторией действительно можно было считать идеалом. Достаточно напомнить, что поташ тогда изготовлялся на кустарных промыслах из золы. Селитра вырабатывалась буртовым способом из навоза. Необходимый для содового производства аммиак получали сухой перегонкой кожевенных стружек. И только производство анилиновых красителей, как наиболее высокоорганизованное нз всех других видов химического производства, осуществлялось на основе ароматических углеводородов из каменноугольных смол оно, по существу, и представляло собой лабораторию больших размеров. Ввиду того, что все химические реакции, лежащие в основе этого производства, являются практически необратимыми и легко управляемыми, результаты лабораторных разработок по синтезу анилиновых красителей без особых трудностей переносились в промышленность. Д. И. Менделеев, хорошо осведомленный о состоянии дел во всех отраслях тогдашней химической промышленности, имел поэтому все основания для призыва строить химические заводы так, чтобы они представляли собой химические лаборатории больших размеров. [c.150]

    На опыте установлено, что важнейшими факторами, влияю-щим и на скорость реакций, являются химическая природа веществ, температура, концентрация, давление, катализатор. В то же время, закономерности, управляющие действием этих факторов, в сильной степени различаются в зависимости от типа системы, в которой протекает реакция. [c.55]

    Химия как одна из естественных наук изучает свойства веществ в зависимости от их состава, строения и внешних условий. Изучение законов, управляющих превращением веществ, приводит к раскрытию явлений, совершающихся в окружающем нас мире, и способствует выработке научного, диалектико-материалистического мировоззрения. В химических превращениях одни вещества исчезают, вместо них появляются другие с новым сочетанием атомов. Атомы в химических реакциях не исчезают и не возникают, но переходят из одних веществ в другие. [c.4]

    Первый шаг состоит в том, чтобы показать, как структура системы кодируется в граф и как стехиометрия, структура сети и феноменология скорости реакции отражаются в управляющих уравнениях для пространственно-однородной системы. Предположим, что реакционная смесь содержит п химических веществ. , которые могут быть атомами, ионами или молекулами, и что — стехиометрический коэффициент /-Г0 вещества в уравнении у-й реакции. v J — неотрицательные действительные числа, отражающие молярные соотношения вешеств в. реакции. Каждая реакция независимо от ТОГО, представляет ли она собой элементарную стадию или нет, будет записываться в виде [c.325]

    Первый — увеличение оптимальности конкретных, хорошо изученных с точки зрения влияния общепризнанных управляемых параметров реакций, может быть достигнуто применением новых катализаторов и реагентов. Это чисто химический аспект. [c.10]

    П — объем прибыли. R — критерий оптимальности. / г — универсальная газовая постоянная. г — число управляющих воздействий. гi — скорость элементарной стадии химической реакции. Q — количество тепла. [c.11]

    Р — основной продукт химической реакции. Q, S — побочные продукты химической реакции. i, j, k, I, p— номер переменной, состояния или управляющего воздействия. [c.12]

    Первое искусственное осуществление ядерной реакции (Резерфорд, 1919) положило начало новому методу изучения атомного ядра. Открытие нейтронов (Чэдвик, 1932) привело к возникновению протонно-нейтронной теории атомных ядер, предложенной сначала Д. Д. Иваненко и Е, Н. Гапоном (1932) н в том же году Гейзенбергом. Вскоре Фредерик и Ирен Жолио-Кюри (1934) открыли явление искусственной радиоактивности В 1938 г. Хан и Штрассман осуществили деление атомного ядра урана, а в 1940 г. К. Д. Петржак и Г. Н. Флеров открыли явление самопроизвольного деления атомных ядер. В 40-х годах была осуществлена цепная ядерная реакция (Ферми) и вскоре был открыт новый вид ядерных превращений — термоядерные реакции. Дальнейшее развитие ядерной физики сделало возможным использование ядерной энергии. Позднее эти явления стали использовать при химических и биологических исследованиях. В настоящее время разрабатывается проблема осуществления управляемых термоядерных реакций. [c.19]

    Клибанов М. В., Слинько М. Г., Спивак С. И., Тимошенко В. И. Применение теории графов к построению механизма и кинетических уравнений сложной химической реакции Ц Управляемые системы.— Новосибирск Наука, 1970.— Вып. 7.— С. 64—69. [c.140]

    Следовательно, комплексообразоваппе является скорее физико-химическим процессом, чем химическим, хотя некоторые авторы и относят комплексы к категории химических соединений ,[32], поскольку этот процесс по многим признакам подчиняется закопан, управляющим химическими реакциями. [c.138]

    Система ДИАХИМ [53] (Диалоговая система для химических научных исследований) была разработана в МГУ в качестве логического продолжения системы АСУМ МС (Автоматизированная Система Управления Моделями Молекулярных Систем). Система ДИАХИМ в отличие от американских систем сразу была ориентирована на работу именно с пространственными трехмерными моделями молекулярных систем. Особенностью этой системы является то, что задача автоматизации химических исследований ставится здесь как задача дискретного оптимального управления. При таком подходе все поисковые задачи (а сннтез заданного химического вещества в конечном счете — тоже поиск последовательности химических реакций, приводящих к нужному результату) оказываются тождественными по своей структуре и различаются лишь видом конкретного функционала задачи управления и физическим смыслом фазовых и управляющих переменных. [c.54]

    Среди причин, сдерживающих внедрение адаптивных систем для управления химически.ми реакциями, основной является трудность не только прямого, но и косвенного измерения управляемых величин. В существующих системах адаптивного управления встройка датчиков даже для косвенного измерения требуют выполнения большого объема конструкторских и схемотехнически работ. Кроме того, в условиях агрессивных сред химических производств они весьма ненадежны. [c.186]

    Физико-химический анализ, разработанный школой Н. С. Курна-кова, сосхоит из топологии и метрики химической диаграммы. Топология диаграмм заключается в качественном изучении геометрических свойств диаграммы, неизвестных при ее преобразовании. Задачей метрики химической диаграммы является установление на основании закономерностей, управляющих химическими реакциями, и прежде всего закона действия масс, зависимости между составом и свойствами системы, т. е. теоретическое построение диаграмм состав — свойство. [c.222]

    В то же время законы, управляющие протеканием элементарных реакций, зиячителыю ироще, чем законы протекания сложных реакций. Поэтому изложение курса химической кинетики целесообразно начать с изложения теории элементарных реакций. [c.56]

    Многие расширяющиеся цементы содержат добавки, из которых в порах цементного камня образуется эттрингит. Этот минерал, как мы видели, образуясь в процессе коррозии, вызывает разрушение цементного камня. В случае коррозионного разрушения образование эттрингита происходит неравномерно в объеме цементного камня. Когда же эту реакцию используют для получения управляемого процесса расшире1шя, то расширяющую добавку тонко диспергируют и равномерно распределяют в цементном порошке, а ее химическую активность выбирают такой, чтобы расширение происходило на определенной стадии твердения, когда структура уже способна воспринимать кристаллизационное давление, но в то же время еще сохраняется возможность восстановления нарушенных при расширении контактов. К таким расширяющим добавкам относится, например, смесь сульфата кальция, алюмината кальция и гидроксида кальция. [c.133]

    Реакция диспропорционирования радикалов ароматических углеводородов является одним из частных случаев одного из наибо.хее общих законов, управляющих процессами в органической химии. Этот закон может быть сформулирован следующим образом реакции самопроизвольного превращения органических молекул, без участия посторонних соединений, всегда идут в сторону накопления в одной части системы максимально обуглеро-женных молекул или частей молекулы, а в другой — соединений или частей молекулы, обогащенных водородом, кислородом, серой и азотом органическая молекула стремится к состоянию минимального уровня свободной энергии, перестраивая "свою структуру в направлении возникновения группировок атомов, близких к углекислоте, воде, метану, графи. у, сероводороду, aMMHaiiy и другим веществам, т. е. к соединениям с минимальным уровнем термодинамического химического потенциала. [c.111]

    На стыке молекулярной биологии с физической и физико-органической химией возникла еще одна не менее важная задача — создать сравнительно простые каталитические системы, в которых использовали< ь бы принципы действия активных центров, работающих в ферментах. Подобного рода исследования обогащают физико-органическую химию познанием нетрадиционцых путей (механизмов), позволяющих ускорять или в общем случае регулировать скорости химических реакций. Изучение механизмов молекулярной биологии, в частности движущих сил ферментативного катализа, поможет найти пути создания избирательных химических катализаторов с управляемыми свойствами [7, 8]. В то же время анализ как общих закономерностей, так и различий, наблюдаемых в ферментативных и модельных системах, можно рассматривать как качественно новую ступень углубленного изучения самих ферментов. Иными словами, подобного рода исследования в области молекулярной химической бионики должны способствовать формированию новых взглядов на природу ферментативного катализа. [c.3]

    В годы второй мировой войны в связи с потребностями радиолокационной техники были разработаны детекторы из германия и кремния. Исследование этих полупроводниковых материалов привело американских ученых Бардина и Браттейна в 1948 г. к созданию транзистора, теория которого была разработана В. Шокли. С этого времени начинается промышленный выпуск многих типов полупроводниковых приборов и, в первую очередь, диодов,, усилительных триодов, мощных выпрямителей, индикаторов излучения, а также преобразователей световой и тепловой энергии в электрическую. За последние годы на основе полупроводников созданы магниточувствительные приборы, измерители механических деформаций, излучатели света и в том числе квантовые генераторы — лазеры, позволяющие получать направленный луч света высокой интенсивности. Одним из весьма перспективных направлений является использование полупроводников в качестве управляемых катализаторов химических реакций. [c.10]

    Объясняя, почему именно с 90-х годов XIX в. на передний план физико-химических исследований выдвинулось изучение химической кинетики п катализа, В. Оствальд писал, что для техники знаяпе законов, управляющих скоростью химических реакций, является вопросом чрезвычайной важности, так как только при знаппи этих закопоп возможно овладеть применяемыми в каждом случае реакциями. Особенно это важно для медленно протекающих процессов, чтобы быть в состоянии их ускорить, так как для химической индустрии... время — деньги  [c.356]

    Белки входят в состав живых организмов и являются осмовными материальными агентами, управляющими всеми химическими реакциями, протекающими в организме. [c.446]

    Один из аспектов динамики химических реакций связан с предсказанием качественной динамики реакционной смеси на основе информации о топологии реакционной сети и зависимости скоростей от концентраций различных соединений. Для этой проблемы естественным оказывается теоретико-графовый подход, поскольку структура реакционной сети может быть закодирована в направленном графе, ребра которого взвешены в соответствии с внутренними скоростями реакций. Это в свою очередь приводит к факторизации управляющих уравнений, в результате которой эффекты стехиометрии, структуры сети и феноменология скорости реакции могут быть изучены раздельно. На этой основе легко получить некоторые результаты, связанные с динамикой нестационарных и стационарных состояний, при использовании известных или легко доказываемых результатов теории графов. В частности, возможно классифицировать стационарные состояния и разработать алгоритм для определения того, какие из различных типов стационарных состояний, если они вообще возможны, могут существовать в данной системе. Этот подход ведет также к полному описанию глобальной динамики подмножества того, что называется вершинноуправляемыми сетями. Может быть показано, что уравнения для таких систем всегда имеют единственное стационарное состояние, являющееся глобально асимптотически устойчивым. Кроме того, когда такой тип системы периодически возмущается внешним источником, отклик всегда асимптотически периодичен с периодом, равным периоду возмущающей функции. Следовательно, система этого типа может служить в качестве совершенного преобразователя частоты — свойство, необходимое при решении многих биологических задач. [c.322]

    На бумаге такой путь выглядит очень соблазнительным, поскольку он сводится к простому соединению двух молекул. В действительности же показанная реакция протекать не может. Однако возможен обходной путь (и не один), суммарный итог которого будет в точности соответствопать показанному на схеме превращению (о принципах выбора таких путей см. разд. 2.1). В настоящее время можно сказать, что органичесю1й синтез достиг такого уровня, что стало возможным, по крайней мерс в принципе, синтезировать что угодно из чего угодно (особенно, если не считаться с затратами средств и времени). Однако это могущество отнюдь не полщебная палочка, управляемая одними нашими желаниями. Мощь органического синтеза покоится на прочном фундаменте знания законов протекания органических реакций, которые и служат главным инструментом в работе химика-синтетика. В каждой реакции образуются или разрываются определенные связи между определенными атомами. Именно этой определенностью в протекании химической реакции и обусловлена сама возможность направленного органического синтеза. Следовательно, одной из главных задач синтетика является выбор реальной реакции, наиболее подходящей для создания нужной связи (или связей) в требуемом месте собираемой молекулы, [c.8]


Смотреть страницы где упоминается термин Реакции химические управляемые: [c.19]    [c.252]    [c.237]    [c.35]    [c.128]    [c.491]    [c.67]   
Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте