Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы связь с белковым обменом

    Рассматривая обмен веществ, мы излагали отдельно обмен белков, обмен жиров, обмен углеводов и т. п. Однако такое деление является искусственным и диктуется исключительно удобством изложения. В действительности обмен веществ в организме протекает как единое целое при тесном взаимодействии и взаимообусловленности отдельных составляющих его процессов. Даже первый этап обмена — переваривание пищи — представляет собой одновременно протекающий процесс распада белков, жиров и углеводов в желудочно-кишечном тракте. Дальнейшие превращения белков, жиров и углеводов в тканях в процессах промежуточного обмена настолько интимно связаны между собой, что для целого организма обмен, например, белков, изолированный от обмена углеводов, является абстракцией. [c.378]


    Связь между обменом углеводов, жиров и белков [c.414]

    Пировиноградная кислота является также связующим звеном между обменом углеводов и белков, так как она может образоваться из продуктов превращений ряда аминокислот. С другой стороны, она служит источником синтеза аминокислоты аланина, из которой в результате переаминирования могут образовываться другие аминокислоты  [c.160]

    Гормоны панкреатической (поджелудочной) железы. Панкреатическая железа — железа и внешней и внутренней секреции. В ткани поджелудочной железы имеются группы клеток в виде маленьких островков, которые не связаны с протоками железы. Эти островки получили название островков Лангерганса в них вырабатывается гормон панкреатической железы — инсулин. Островки Лангерганса обильно снабжены кровеносными сосудами, поэтому инсулин легко проникает в кровяное русло. Инсулин оказывает сильное влияние на углеводный обмен понижает содержание сахара в крови, активирует синтез гликогена из глюкозы, увеличивает клеточную проницаемость по отношению к глюкозе кроме того, инсулин активирует синтез белков из аминокислот и тормозит образование углеводов из белков и жиров. [c.146]

    Даже это краткое перечисление позволяет заключить, что цикл Кребса занимает центральное положение в метаболизме клетки. Особенно важно, что через реакции цикла Кребса устанавливается тесная связь между обменом трех важнейших групп соединений — белков, жиров и углеводов (см. рис. 4.10). [c.145]

    Одним из важнейших результатов применения меченых атомов к изучению живых организмов было, как уже указывалось, открытие высокой динамичности процессов распада и ресинтеза жиров, углеводов и белков, ведуш,их к быстрому их обновлению в тканях и органах. В работах Шенгеймера [1061 и других биохимиков это было наглядно показано для жиров и углеводов путем применения дейтерия и изотопов углерода, а для белков, главным образом, путем применения тяжелого азота, радиоактивных изотопов фосфора и серы. При введении в пищу жирных кислот, меченных дейтерием в радикале, этот дейтерий быстро появляется в жирах всех органов и, прежде всего, в жировых запасах, откуда он переходит в другие места. Средняя продолжительность пребывания каждого атома меченого водорода в теле позвоночных близка к двум неделям. При кормлении крыс гидролизатом казеина, содержавшим дейтерий, было установлено, что за три дня обновляется 10% протеинов печени и 25% протеинов мускулов. При кормлении казеином с цитратом аммония, меченным тяжелым азотом, последний через несколько дней был обнаружен почти во всех аминокислотах тела (но не в несинтезирующемся в нем лизине), в креатине мышц, гиппуровой кислоте мочи и проч. Если животное имело бедную белками пищу, то оно усваивало около половины вводимого азота. При нормальной диете, когда животное находилось в состоянии азотного равновесия, усвоение азота уменьшалось, но качественная картина оставалась той же. Столь же быстрое усвоение и распределение азота в организме наблюдается при кормлении глицином, лейцином, тирозином и другими аминокислотами, меченными тяжелым азотом. Азот из пищи особенно быстро усваивается в виде синтезируемых глютаминовой и аспарагиновой кислот. Это, очевидно, связано с быстрым течением открытых А. Е. Браунштейном и М. Г. Крицман реакций энзиматического переаминирования этих кислот с а-кетокислотами, а также с их исключительной ролью в общем обмене аминокислот и протеинов [11]. [c.496]


    СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ, ЖИРОВ И УГЛЕВОДОВ [c.378]

    Как было указано, обмен веществ в организме человека протекает не хаотично он интегрирован и тонко настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. В частности, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека, как и в живой природе вообще, не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, подчиняющийся диалектическим закономерностям взаимозависимости и взаимообусловленности, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии. [c.545]

    Описанная выше реакция образования аминокислот путем прямого аминирования кетокислот аммиаком имеет большое биологическое значение как один из путей, связывающий обмен углеводов с обменом аминокислот и белков. Прямое аминирова-няе кетокислот тесно связано с переаминированием, т. е. переносом групп ЫНд с аминокислот на кетокнслоты. С помощью изотопного метода было показано, что в организме происходит непрерывная замена групп ЫНг как заменимых, так и незаменимых аминокислот (кроме лизина и треонина) на новые в результате обратимого превращения этих аминокислот в а-кетокислоты. [c.270]

    Обратимость реакций анаэробного распада углеводов имеет очень большое значение в жизнедеятельности растений. Мы уже говорили, что пировиноградная кислота играет главную роль в углеводном обмене и занимает одно из важных мест в общем обмене веществ. Она связана взаимными переходами с обменом аминокислот, белков, жиров, органических кислот и других соединений. За счет пировиноградной кислоты или других промежуточных продуктов цикла анаэробного распада углеводов может синтезироваться глюкоза, а следовательно, и другие углеводы таким образом пировиноградная кислота связывает в [c.164]

    Благодаря такому превращению продуктов обмена углеводов в аминокислоты возникает прямая связь между обменом углеводов и белков. [c.379]

    Серин легко превращается в пируват под действием сериндегидратазы. В связи с этим в тканях имеются условия для превращения глицина (через серин) в пируват. Этим путем осуществляется участие глицина в обмене углеводов. Важную роль играет серин в биосинтезе сложных белков — фосфопротеинов, а также фосфоглицеридов. Помимо фосфатидилсерина, углеродный скелет и азот серина используются в биосинтезе фосфатидилэтаноламина и фосфатидилхолина (см. главу 11). [c.453]

    Главная составная часть каждого организма — белки, или протеины, которые представляют собой высокомолекулярные органические соединения, построенные из аминокислот, В организмах имеются различные неорганические вещества и многие другие органические соединения. Количество этих соединений в растениях (например, углеводов или жиров) часто может превышать содержание белков, но именно белки играют решающую роль в обмене веществ. Белки являются незаменимой основой живого вещества, поэтому они имеют исключительное значение в жизни. Процессы роста и развития связаны с белковыми веществами. Это верно как для простейших вирусов, так и для высокоорганизованных высших растений и животных. Поэтому исследование явлений роста и развития нельзя отрывать от изучения белковых веществ, без которых невозможны жизненные процессы. [c.183]

    Водный обмен не только не является изолированным и не зависимым от обмена других веществ — белков, жиров, углеводов и минеральных соединений, а, наоборот, тесным образом с ним связан. Эта связь наиболее выражена в отношении минерального обмена. [c.387]

    Превращения углеводов, жиров и белков, их распад и синтез в организме теснейшим образом связаны друг с другом. Нельзя представить себе изолированно превращение отдельных органических, а также и неорганических веществ в организме. Только как исключение можно наблюдать преимущественный синтез углеводов (у зеленых растений на свету), распад углеводов с образованием этилового спирта и углекислого газа (в дрожжевых клетках при спиртовом брожении) и молочной кислоты (при работе мышц), синтез жиров (при откорме животных), синтез белков (при усиленном росте). Но даже и в этих случаях обмен веществ не сводится к превра[це-пиям т0JПзK0 одной какой-либо группы веществ. Обмен веществ между любым живым организмом п окружающей его средой является чрезвычайно слюж-ным процессом, в который вовлекаются химические составные части организма и вещества, поступающие в пего извне (пищевые вещества, включая кпс лород и воду). Обмен веществ у человека и животных регулируется централыюй нервной системой. При изучении превращений углеводов, жиров и белков приводились данные о регуляторной деятельности центральной нервной системы. Было бы ошибочным полагать суп.1,ествование в центральной нервной системе отдельных механизмов, регулирующих превращения отдельных групп веществ. Процесс обмена веществ между организмом и внешней средой, лежащей в основе проявления жизни,— единый биологический процесс и если его расчленяют на процессы превращения отдельных веществ, то это делают только с целью более глубокого его познания и изучения. [c.459]


    L-(-f-)-Аланин, .-аминопропионовая кислота, GH3GHNH2GOOH обычная составная часть всех белков, образуется из пировиноградной кислоты вследствие переаминирования и превращается в эту кислоту в результате нереаминирования и дезаминирования таким образом, устанавливается непосредственная связь с обменом углеводов. [c.394]

    Если в биохимии и имеются аналогичные явления и процессы, которые могли бы быть нам полезны, то, конечно, их можно встретить в области обмена липидов и углеводов, который все более интенсивно и глубоко изучается. Мы знаем, что в обмене липидов главная роль принадлежит ацетилкоферменту А. Эта основная единица, коль скоро она уже синтезирована, действует как первичный донор в реакциях ацетилирования и как акцептор ацетильных групп, образующихся в процессе обмена липидов. Недавно обнаружен белок, служащий переносчиком ацильной группы [25]. Получены данные, что синтез, окисление и восстановление высокомолекулярных жирных кислот с четным числом углеродных атомов происходят таким образом, что растущая углеродная цепь никогда не освобождается, оставаясь связанной с белком-иереносчиком. Руководствуясь этими фактами, мы можем предсказать, что вслед за начальной стадией восстановления сульфата в сульфит и нитрата в нитрит будет происходить образование промежуточных продуктов, связанных с белком. Дальнейшее восстановление этих промежуточных продуктов — их включение в аминокислоты и другие многочисленные соединения серы и азота, входящие в состав живой клетки,— будет происходить в соответствии с законами сохранения энергии химических связей и с общими закономерностями переноса грунп. [c.286]

    Обмен углеводов, жиров и белков только в целях удобства изложения был рассмотрен отдельно. В действительности в организме, в его отдельных клетках все обменные процессы теснейшим образом связаны друг с другом. Взаимные связи постоянно возникают как на основе общности веществ, образующихся при распаде углеводов, жиров и белков, так и на основе энергетической зависимости. Энергия, выделяющаяся при распаде одних соединений, утилизируется в живой клетке для синтеза других. [c.414]

    Открытие витамина В12, как было уже упомянуто в главе о микроэлементах, связано с изучением причин возникновения анемии скота в определенных местностях, почва которых содержала недостаточное количество кобальта. Изучение свойств ци-анкобаламина показало, что этот витамин необходим для нормального течения процессов кроветворения. Ряд биологических процессов катализируется производными витамина В12 существует целая группа соединений, сходных с ним по общему типу строения молекулы и называемых кобамидными ферментами они ускоряют процессы изомеризации аминокислот (например, перестройку глутаминовой кислоты в аспарагиновую кислоту), метилирование аминокислот, синтез пуриновых и пиримидиновых оснований, синтез белка, обмен углеводов. Большое число реакций, управляемых соединениями кобальта, делает эти комплексы жизненно важными. Сам по себе витамин В12 не является коферментом функции коферментов выполняют кобамидные коферменты, причем образование этих производных из витамина В12 идет через несколько стадий, в которых участвуют коферменты ФАД и НАД В конечном продукте вместо группы СЫ содержится дезоксиаденозил  [c.133]

    Необходимо отметить, что, помимо взаимных переходов между разными классами веществ в организме, доказано существование более сложных форм связи. В частности, интенсивность и направление любой химической реакции определяются ферментами, т.е. белками, которые оказывают непосредственное влияние на обмен липидов, углеводов и нуклеиновых кислот. В свою очередь синтез любого белка-фермента требует участия ДНК и всех 3 типов рибонуклеиновых кислот тРНК, мРНК и рРНК. Если к этому добавить влияние гормонов, а также продуктов распада какого-либо одного класса веществ (например, биогенных аминов) на обмен других классов органических веществ, то становятся понятными удивительная согласованность и координированность огромного разнообразия химических процессов, совершающихся в организме. Многие из этих процессов были подробно освещены при описании обмена отдельных классов веществ (см. главы 10-12). В данной главе кратко представлены примеры взаимных переходов отдельных структурных элементов белков, жиров, углеводов (рис. 15.1) и нуклеиновых кислот в процессе их превращений и обмена. [c.546]

    Аспарагиновая и глутаминовая кислоты (формулы которых приведены выше) являются широко распространенными компонентами белков. Эти дикарбоновые аминокислоты играют важную роль в реакции переаминирования и передезаминирования, образуясь или превращаясь при этом в оксалилуксусную и соответственно а-кетоглутаровую кислоты таким образом, устанавливается связь между обменом белков и углеводов. Глутаминовая кислота является составной частью многих соединений пептидного характера, как, например, глутатиона и фолиевой кислоты. [c.396]

    Биологическое Ф., осуществляемое путем фос-форилазных или фосфокиназных реакций, играет важную роль в обмене веществ, в частности в окислении и синтезе углеводов, фосфолипидов, белков и нуклеиновых к-т, поскольку большинство промежуточных соединений, участвующих в обмене этих классов веществ, подвергается превращениям только в фосфорилиро-ванной форме. Не менее важную роль играют нек-рые фосфокиназы в процессах образования и накопления АТФ, катализируя перенос макроэргич. фосфата между богатыми энергией фосфорилированными соединениями и АТФ (см. Фосфокиназы и Макроэргические связи). [c.253]

    Поскольку ацотил-КоА образуется пе только в результате окисления /кирных к-т, но также и из углеводов в процессе гликолиза и из нек-рых аминокислот, то создается связь ме1кду обменом белков и углеводов и обменом llv. [c.34]

    Поскольку ацотнл-КоЛ образуется ite только в результате окисления жирных к-т, iio также н из углеводов в нроцессе гликолиза и нз нек рых аминокислот, то создается связь между обменом белкой и углеводов и обменом /iv. [c.34]

    Современная А. значительно отличается от классической А. кон. 19-нач. 20 вв., она пользуется несравненно более совершенными методами исследования, опирается на возросший уровень знаний, развитую хим. пром-сть и ши-рокзто сеть агрохим. служб. Т. наз. зеленая революция -резкое повышение урожайности с.-х. культур, достигнутое в начале 50-х гг. 20 в., связана не только с успехами генетики и селекции, но и с достижениями А. Агрохим. наука располагает знаниями о содержащихся в растениях в-вах (белках, углеводах и др.), биосинтезе и обмене в-в в растениях, фитогормонах, ферментных системах, болезнях растений. [c.29]

    ГЛУТАМИНОВАЯ КИСЛОТА. Аминокислота. НООССНгОНгСПКНзХ ХСООН. Плохо растворима в воде. Очень легко синтезируется в ор-ганизл1е животных. Занимает важное место в азотном обмене микробного, растительного и животного организмов и выполняет роль связующего звена в обмене углеводов и белков, а также жиров и белков. В растительных кормах обычно встречается в количествах, удовлетворяющих потребности животных. [c.74]

    Никотинамид осуществляет биохимические функции в составе коферментов НАД и НАДФ, которые, в свою очередь, являются составной частью окис-лительно-восстановительных ферментов — дегидрогеназ. Участвуя в различных обменных процессах, они катализируют более 100 биохимических реакций окисления спиртов в альдегиды и кетоны, альдегиды и кетоны в органические кислоты, амины в имины с последующим образованием оксисоединений и др. Коферменты связаны с белками слабыми связями, и возможна диссоциация активного фермента на кофермент и апофермент. Дегидрогеназы катализируют некоторые реакции окисления углеводов и липидов. Кроме того, НАД и НАДФ являются аллостерическими эффекторами, регулирующими скорости ряда жизненно важных биохимических процессов, например цикла Кребса. [c.115]

    АДЕНОЗИНТРИФОСФОРНАЯ КИСЛОТА (АТФ). Основное соединение, в котором запасается и переносится энергия, необходимая для осуществления синтетических процессов в обмене веществ, а также для выполнения работы нивыми организмами. В состав АТФ входят остатки аденина, углевода рибозы и три остатка фосфорной кислоты. Энергия, высвобождаемая АТФ, может переноситься почти без потерь на другие соединения или использоваться для синтеза белков, нуклеиновых кислот, углеводов, жиров, витаминов и многих других соединений. Энергия АТФ потребляется также при мышечном сокращении, в нервных клетках и при других видах работы в живых организмах. АТФ в организме образуется из адепозиндифосфорной кислоты (АДФ) и минеральной фосфорной кислоты за счет энергпп, которая выделяется при окислении различных органических веществ в живых клетках или при фотосинтезе за счет световой энергии. Во всех этих процессах энергия, как правило, не теряется, а переходит в особый вид химической энергии, заключенной в фосфатных связях АТФ. При окислении в процессе дыхания грамм-молекулы глюкозы, например, может образоваться до 30 молекул АТФ. [c.14]

    ГИДРОЛАЗЫ, класс ферментов, катализирующих гидролиз связей между атомом углерода и гетероатомом, в част-яости пептидных связей (напр., фермент химотрипсин), амидных (напр., пенициллгтамидаза), гликозидных (напр., амилаза), сложноэфирных (напр., липаза). Участвуют в обмене белков, нуклеиновых к-т, углеводов, липидов. См., напр., Аденозинтрифосфатазы, Глюкозофосфатазы, Дезоксирибонуклеазы, Пепсин, Рибонуклеазы, Трипсин, Фос-фолипазы. [c.133]

    Методы испытаний другого типа основаны на том, что деятельность коры надпочечников тесно связана с углеводным обменом . Так, после удаления надпочечников резко уменьшается содержание гликогена в пе-чени . Лонг и его сотрудники заметили, что введение активного начала коры надпочечников вызывает повышение содержания углеводов в крови и в печени и одновременно повышает выделение небелкового азота с мочой, т. е. повышает распад белков, сопровождающийся образованием мочевины и других продуктов белкового обмена. Количественные определения показали, что все синтезированные углеводы образовались из белков. Хотя кортикоиды, повидимому, непосредственно влияют главным образом на белковый обмен, имеются некоторые данные, указывающие, что активные начала коры надпочечников способствуют превращению глюкозы в гликоген печени " и могут задерживать окисление глюкозы . Способность гормона содействовать отложению гликогена в печени голодающих адреналэктомированных крыс была использована Рейнеке и Кендаллом- для разработки метода определения активности, развитого затем Ольсеном и его сотрудниками . Активность выражается в гликогенных единицах, содержащихся в 1 мг вещества гликогенная единица произвольно характеризуется как активность 1 у кортикостерона при введении его в четыре приема (с двухчасовыми интервалами) голодающей адреналэктомированной крысе. По этому тесту наибольшей активностью обладают оба соединения, содержащие кислород в положениях И и 17 кортикостерон и его 11-дегидронроизводное несколько менее активны. [c.447]

    Инсулин синтезируется бета-клетками, регулирует обмен углеводов, жиров и белков. Действие на углеводный обмен связано с тем, что инсулин усиливает транспорт глюкозы из крови в скелетные мышцы, сердечную мышцу и жировую ткань за счет повышения проницаемости клеточных мембран этих тканей и стимулирует синтез гликогена в печени и мышцах. Таким образом инсулин снижает уровень глюкозы в крови, т. е. проявляет гипогликемический эффект. Инсулин стимулирует также синтез и депонирование жира в > ировой ткани, проникновение аминокислот в клетки и синтез из них белка. Следовательно, инсулин способствует запасанию питательных веществ, т. е. проявляет анаболическое действие. [c.143]

    Часть образовавшегося фруктозо-6-фосфата участвует в реакциях, характерных для пентозного цикла, однако идущих в противоположном направлении, другая часть поступает в общий обмен углеводов. Фотосинтез в первую очередь есть процесс превращения световой энергии в химическую. Это превращение связано с образованием богатых энергией фосфорных соединений (АТФ), которые и идут в общий фонд клеточной энергии. Одновременно с этим процессом идет процесс ассимиляции углерода и накопление органических веществ с огромными запасами световой энергии. При фотосинтезе образуются не только углеводы, но и белки, жиры и ряд других веществ. Наиболее характерным органическим продуктом начальных биохимических превраше- [c.378]


Смотреть страницы где упоминается термин Углеводы связь с белковым обменом: [c.255]    [c.319]    [c.481]    [c.8]    [c.133]    [c.20]    [c.76]    [c.459]    [c.459]    [c.382]   
Биологическая химия Изд.3 (1998) -- [ c.412 , c.460 ]




ПОИСК





Смотрите так же термины и статьи:

Обмен в связи

Обмен углеводов



© 2024 chem21.info Реклама на сайте