Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен частиц в псевдоожиженном слое

    При теплообмене в псевдоожиженном слое межфазный перенос теплоты в 2-3 раза выше, чем теплоперенос для одиночной частицы. Коэффициенты теплоотдачи а для этого случая можно определить с помощью следующих зависимостей  [c.312]

Рис.7.22. Температурные кривые при межфазном теплообмене в псевдоожиженном слое (м — мелкие частицы, к — крупные частицы) Рис.7.22. <a href="/info/476626">Температурные кривые</a> при <a href="/info/1442890">межфазном теплообмене</a> в <a href="/info/25630">псевдоожиженном слое</a> (м — <a href="/info/1667984">мелкие частицы</a>, к — крупные частицы)

    Обычно передача теплоты происходит через ограничивающую стенку. Теплообмен между этой стенкой и системой газ — твердые частицы, а также внутри этой системы представляет собой сложный процесс, в котором проявляются различные более простые процессы, соответствующие разным рабочим условиям. Самый простой случай — неподвижные твердая фаза и газ (неподвижный плотноупакованный слой). В этом случае теплота переносится через газ и твердые частицы к внутренней области насадки. Во втором случае газ течет через пространство между частицами насадки параллельно стенкам, в то время как сами частицы неподвижны (плотноупакованный слой с движущимся через него газом). Из-за того что газ течет в зазорах между твердыми частицами, происходит интенсификация теплообмена в слое. В третьем случае как газовая, так и твердая фаза находятся в движении из-за перемешивания или вибрации насадки (перемешиваемый слой) или вследствие обмена импульсом между движущимися газом и частицами (псевдоожиженный слой). При этом наблюдается дополнительное повышение интенсивности теплоотдачи твердой фазы вследствие движения частиц. [c.426]

    Теплообмен в псевдоожиженном (кипящем) слое. Благодаря большой поверхности твердых частиц теплообмен в псевдоожиженном слое протекает очень интенсивно. Однако расчет теплообмена в этом случае затруднен [c.293]

    Мелкие частицы можно перерабатывать в кипящем (псевдоожиженном) слое, что реализовано в печах КС - кипящего слоя (рис. 5.25,6). Пылевидный колчедан подается через питатель в реактор. Окислитель (воздух) подается снизу через распределительную решетку со скоростью, достаточной для взвешивания твердых частиц. Их витание в слое предотвращает слипание и способствует хорошему контакту их с газом, выравнивает температурное поле по всему слою, обеспечивает подвижность твердого материала и его переток в выходной патрубок для вывода продукта из реактора. В таком слое подвижных частиц можно расположить теплообменные элементы. Коэффициент теплоотдачи от псевдоожиженного слоя сравним с коэффициентом теплоотдачи от кипящей жидкости, и тем самым обеспечены эффективные теплоотвод из зоны реакции, управление его температурным режимом и использование тепла реакции. Интенсивность гфоцесса повышается до 1000 кг/(м ч), а концентрация 802 в обжиговом газе - до 13-15%. Основной недостаток печей КС - повышенная запыленность обжигового газа из-за механической эрозии подвижных твердых частиц. Это требует более тщательной очистки газа от пыли - в циклоне и электрофильтре. Подсистема обжига колчедана представлена технологической схемой, показанной на рис. 5.26. [c.425]


    Теплообмен в псевдоожиженном слое складывается из конвективного переноса тепла от ожижающего агента к твердым частицам и переноса тепла путем теплопроводности внутри самих частиц. Переносом тепла излучением обычно можно пренебречь ввиду малой разности температур ожижающего агента и твердых частиц. Кроме того, для частиц весьма малых размеров, обычно подвергаемых псевдоожижению, пренебрегают различием температур в объеме частицы и принимают в качестве расчетной некоторую ее среднюю температуру 0. Для частиц, обладающих хорошей теплопроводностью, можно считать, что весь перепад температур сосредоточен в тонком пограничном слое (пленке) вокруг частицы, а ее внутреннее термическое сопротивление является пренебрежимо малым. [c.294]

    Как отмечалось выше, физические свойства частиц, а также их размер и форма влияют на теплообмен в псевдоожиженном слое. Так, например, рост массы частиц ут приводит К уменьшению интенсивности движения частиц, а с ростом размера частиц, как показывают результаты многих работ, уменьшаются значения Отах-Частицы более округлой формы испытывают меньшее сопротивление при перемещениях, их движение становится более интенсивным и величина Отах увеличивается. [c.29]

    Объем книги намеренно ограничен, и все внимание сконцентрировано на слое частиц в неподвижном аппарате при их псевдоожижении газом или жидкостью. При этом псевдоожижение газом представляет наибольший интерес, так как оно значительно важнее в смысле практического применения. В книге не рассматриваются, например, пневмотранспорт твердых частиц и теплообмен между псевдоожиженным слоем и стенками аппарата, хотя для их объяснения могут быть использованы изложенные в книге представления. Явление текучести мелкозернистого материала, рассматриваемое многими авторами в связи с псевдоожиженным состоянием, также не включено в монографию, так как в настоящее время оно представляет собой самостоятельную тему. Напротив, псевдоожижение можно рассматривать как раздел более обширной темы — текучести, а псевдоожиженную систему твердых частиц — как текучую жидкость со специфическими свойствами. [c.11]

    Теплопередача от псевдоожиженного слоя к поверхности теплообмена подчиняется законам, отличающимся от законов теплообмена между газовым потоком и твердыми частицами псевдоожиженного слоя. Теплообмен менаду псевдоожиженным слоем и погруженной в него поверхностью теплообмена во многом определяется скоростью газового потока и порозностью слоя. С увеличением скорости газа усиливается интенсивность перемешивания, способствующая выравниванию температуры в псевдоожиженном слое как по оси, так и по радиусу, т. е. повышению интенсивности теплообмена. Вместе с тем увеличение скорости способствует увеличению порозности слоя, т. е. уменьшению концентрации твердой фазы. Это обстоятельство должно вызвать уменьшение теплопередачи, так как при уменьшении концентрации твердой фазы объемная теплоемкость среды, окружающей поверхность теплообмена, уменьшается. Такое двоякое действие скорости газового потока является причиной максимума зависимости коэффициента теплоотдачи от скорости газового потока [116, 44]. До тех пор, пока с повышением скорости газа порозность увеличивается незначительно, увеличение интенсивности перемешивания является доминирующим фактором и коэффициент теплоотдачи возрастает при увеличении скорости. [c.144]

    Приведенные выше модели игнорируют пря, юе влияние на теплообмен в псевдоожиженном слое движения частиц, обусловливающего нестационарный характер элементарных актов тепло-и массообмена для каждой отдельной частицы. [c.168]

    Теплообмен в псевдоожиженном слое (ПС). Соотношение для интенсивности теплообмена между поверхностью частиц в ПС и потоком сплошной фазы усредняет имеющиеся опытные данные [5]  [c.296]

    Итак, можно представить себе следующую схему переноса тепла в неоднородном псевдоожиженном слое (рис. Х-4). В момент времени < = О к теплообменной поверхности температурой Гту подходит пакет твердых частиц (для простоты — сферических, диаметром д) при температуре ядра нсевдоожиженного слоя Тв и характерной порозности Еа- Пусть в пристенной зоне (порозность пакета в ней ew ф 6 , термическое сопротивление — Нуу) температура падает от Туу до Т. Начиная от границы этой зоны [c.421]

    Для большинства псевдо ожижаемых зернистых материалов, вследствие малого размера частиц и достаточно большого значения кз, В1 <0,25, и внутреннее термическое сопротивление редко лимитирует теплообмен. О закономерностях переноса тепла в условиях внутренней задачи для псевдоожиженных систем, можно, видимо, в настоящее время судить лишь косвенно — по данным о переносе вещества (математически оба процесса описываются аналогично), в частности, на примере сорбции псевдоожиженным слоем силикагеля водяных паров из воздушного потока Установлено, в частности, что в случае внутренней [c.466]


    Различают теплообмен". I) между т плопередающей поверхностью и псевдоожиженным слоем II) межфазный (между твердыми частицами и ожижающим агентом). Заметим, что перенос тепла между различными точками самого псевдоожиженного слоя, благодаря интенсивному перемешиванию твердой фазы, происходит, как правило, с очень большой скоростью ато обеспечивает практическую изотермичность слоя. [c.414]

    Невозможно рекомендовать тип вставки, оптимальной для всех практических случаев, поскольку каждый процесс, использующий технику псевдоожижения, в разной стенени зависит от отдельных параметров процесса. Вставка, полезная для одного процесса, может оказаться непригодной для другого. Сепарации частиц обычно стремятся избегать это, конечно, не относится к процессам классификации в псевдоожиженном слое, когда вставки, способствующие сепарации (горизонтальные сетки, неподвижная.насадка), безусловно, полезны. С другой стороны, если главным фактором является теплообмен, следует серьезно анализировать возможность использования вертикальных труб или стержней. [c.542]

    При переходе к задаче об одномерном течении внутри псевдоожиженного слоя примем, что течение каждой фазы подчиняется уравнениям движения идеальной нетеплопроводной жидкости, теплообмен между газом и поверхностью твердой частицы отсутствует, движение одномерно и происходит в поле сил тяжести. [c.171]

    ТЕПЛООБМЕН ЧАСТИЦ В ПСЕВДООЖИЖЕННОМ СЛОЕ [c.589]

    ТЕПЛООБМЕН МЕЖДУ ЖИДКОСТЬЮ И ЧАСТИЦАМИ В ПСЕВДООЖИЖЕННЫХ СЛОЯХ [c.261]

    Теплообмен между жидкостью и частицами в псевдоожиженных слоях  [c.261]

    Если твердая фаза является простым наполнителем псевдоожиженного слоя, то мы имеем дело с трехстадийным теплопереносом (см. рис. 39), который лимитируется в звеньях теплопереноса у поверхностей теплогенератора и нагрева. Тепло к твердой фазе поступает от электрических нагревателей, омываемых кипящим слоем, или от сжигания газа, вводимого вместе с воздухом. Если топливо и воздух были д остаточно хорошо перемешаны, то они сгорают вблизи мест ввода, образуя небольшие области теплогенерации с особым температурным режимом. В непосредственной близости от этих областей завершается и теплообмен газовой и твердой фаз, а температура в остальной части объема слоя является практически одинаковой, что и является характерным для циркуляционного режима. Масса частиц в слое в данном случае играет аккумулирующую роль. Для того чтобы не допускать переохлаждение слоя при периодической загрузке, соотношение масс слоя и материала, вводимого для тепловой обработки, не может быть произвольным [c.142]

    Одна из осн. причин широкого применения техники П.-интенсивный теплообмен псевдоожиженного слоя с пов-стями погруженных в него тел или со стенками аппарата [коэф. теплоотдачи 100-1000 Вт/(м -К)]. Теплота передается 1) через тонкую газовую прослойку (толщиной менее ), к-рая непрерывно разрушается и обновляется благодаря движению твердых частиц около одной из указанных пов-стей 2) твердым частицам при их контакте с теплообменной пов-стью фазность т-р отдельной частицы и пов-сти близка к разности т-р пов-сти и слоя, поскольку время контакта мало) 3) пакетам твердых частиц, к-рые периодически сменяются у пов-сти или чередуются с пузырями  [c.135]

    В разд. 6.7 рассмотрен теплоперенос теплопередающая поверхность — псевдоожиженный слой . В настоящем разделе анализируется межфазный теплообмен — между псевдоожи-женными твердыми частицами и ожижающим агентом (пусть для определенности — газом). Этот анализ наглядно иллюстрирует сферу действия и соотношение внешней и потоковой балансовой) задач теплопереноса сделано это применительно к теплообменнику смешения. [c.583]

    Пусть в тонком псевдоожиженном слое частицы полностью доступны контакту с газом (застойные зоны отсутствуют). Малые размеры частиц и не слишком малая их теплопроводность позволяют считать теплообмен с ними безградиентным. Псев-доожиженные частицы находятся в состоянии очень интенсивного движения — практически слой можно считать системой идеального перемешивания поэтому температура частиц по всему объему слоя одинакова и равна температуре на выходе их из аппарата 9". Примем, что газ движется в режиме ИВ — это близко к реальности, если частицы не обладают заметными адсорбционными свойствами по отношению к газу. [c.584]

    Оценки высоты активного участка Я = по формуле (7.406) ддя частиц, обычно используемых в практике псевдоожижения, приводят к величинам Аа, измеряемым миллиметрами или (в случае крупных частиц) несколькими десятками миллиметров. Повышение Н сверх Аа ничего не дает с точки зрения теплообмена (он практически завершен в слое высотой Ла) и вредно с точки зрения энергозатрат (при увеличении Н растет сопротивление псевдоожиженного слоя, а значит и затраты энергии на дутье). И тем не менее в подавляющем большинстве случаев межфазный теплообмен в псевдоожиженном слое протекает в условиях Я > Аа, Я Аа. Дело в том, что в аппаратах промьпштенных размеров тонкие псевдоожиженные слои структурно неустойчивы вероятны случайные выбросы твердого материала в каком-то месте в соседние участки и образование канала (свища), не содержащего твердого материала сюда (по пути наименьшего сопротивления) пойдет основная доля газа, а на других участках скорость упадет [c.586]

    Интенсивность теплообмена в псевдоожиженном слое зависит от скорости ожижающего агента и его теплопроводности, размера и плотности твердых частиц, их теплофизических свойств, геометрических и конструктивных особенностей аппаратуры и ряда других факторов. Из-за множества независимых переменных и сложности их влияния на теплообмен предложенные эмпирические формулы для расчета коэффициентов теплоотдачи, как правило, справедливы лишь в областях, ограниченных условиями экспериментов, на которых они базируются. Эти формулы, разнообразные по структуре, количеству и качественному составу входящих в них переменных, можно разделить на две группы, из коих одна относится к определению /imax (а также Z7opt), а вторая — к расчету h на восходящей или нисходящей ветви кривой h — и. Ниже приводится сопоставление ряда предложенных формул для произвольно выбранной модельной системы стеклянные шарики [плотность pj = 2660 кг/м , насыпная плотность 1660 кг/м , теплоемкость s = 0,8 кДж/(кг -К) = = 0,19 ккад/(кг -°С)] — воздух (или вода) при 20 °С. [c.415]

    Теплообмен в псевдбожнженном (кипящем) слое. Благодаря большой поверхности твердых частиц теплообмен в псевдоожиженном слое проте- [c.308]

    Благоприятные условия контакта фаз позволяют с успехом использовать псевдоожиженные системы для осуществления различных химических реакций. между газом и твердыми частицами. Псевдоожижающий газ может быть инертным агентом, инт енсифицирующим перемешивание твердых частиц и теплообмен (например, в некоторых процессах обжига термически неустойчивых твердых частиц). В других случаях химически инертными могут быть твердые частицы, выступая в роли только теплоносителя, обеспечивающего равномерное поле температур (в частности, при хлорировании метана, в псевдоожиженном слое песка). Очень часто в реакции участвуют как газ, так и твердые частицы, причем последние иногда в качестве катализатора (примерами могут служить гидрофторирование двуокиси урана, каталитическцй крекинг углеводородов). [c.333]

    В соответствии с выражением (1Х,13) были обработаны опытные данные Фриденберга по теплообмену между горизонтальными трубами и псевдоожиженными слоями мелких и легких частиц. Полученные результаты приведены на рис. 1Х-1, где по оси ординат вместо 81 8с отложена левая часть выражейия (IX,13) можно видеть близкое совпадение данных по тепло-и массообмену при надлежащем выборе способа их представления. По опытным данным Фриденберга найдено С — 2,0 0,4 т = = 0,56. [c.385]

    Крайне низкая кажущаяся теплопроводность порошка обусловлена тем, что в вакууме скорость теплопереноса описывается уравнение.м (8). Это явление хорошо известно как эффект Смолуховского (см. разд. 2.8, а также 2.1.8). При нормальном давлении для частиц диаметром примерно 1 мм скорость передачи тепла может контролироваться уравнением (8) в том случае, если теплообмен происходит в нестационарных условиях и время соприкосновения частиц достаточно мало (несколько секунд или меньше). Такая ситуация имеет место в псевдоожиженных слоях, где частицы соударяются с нагревающим или охлаждающим элементом, а также в других контактных теплообменных устройствах, таких как вращающиеся печи для обжи1 а и барабанные сушилки. [c.71]

    В ряде случаев варианты конструктивного оформления деталей, размещаемых в псевдоожиженном слое, ограничены, тем не менее имеются благоприятные возможности для надлежащего выбора размера и расположения теплообменных труб, ориентации и формы разного рода устройств, способствующих более однородному псевдоОжижению. Конструктивные соображения могут, однако, потребовать противоположных решений, так что приходится идти на компромисс. Например, химические реакции и процессы массообмена в псевдоожиженном слое протекают обычно более эффективно при меньших размерах газовых пузырей и равномерном их распределении в объеме слоя, это следует учитывать, конструируя систему перераспределительных перегородок. С другой стороны, перемещение твердых частиц, вызываемое движением газовых пузырей, благоприятно сказывается на теплообмене слой — поверхность и перемешивании зернистого материала, в таких процессах, естественно, система перераспределительных перегородок не должна быть чрезмерно развитой, чтобы не препятствовать интенсивному движению теердых частиц. [c.522]

    Наблюдения за характером потоков газа и твердых частиц в окрестностях горизонтальной трубы приобретают особое значение при изучении теплообмена между псевдоожиженным слоем и этим расположенным в нем твердым предметом. Подробно этот вопрос обсуждается в главе X здесь мы лишь затронем его дл выяснения некоторых свойств Ьставок в псевдоожиженных системах . Для интенсивного теплообмена требуется возможно частый контакт поверхности со свежими порциями твердых частиц из областей, удаленных от этой поверхности. Образование застойных зон твердых частиц вблизи горизонтальной трубы должно препятствовать интенсивному теплообмену Отсюда ясно, что теплообмен с каким-либо предметом зависит от его ориентации в псевдоожиженном слое. Это подтверждено экспериментально причем установлено что теплообмен с плоской плитой наиболее интенсивен при ее вертикальном расположении в слое (с наклонными плитами теплообмен менее интенсивен). [c.529]

    Однократное контактирование происходит при теплообмене между паром (или газом) и псевдоожиженным слоем твердого материала (см. гл. XV1I1). Благодаря перемешиванию и большой поверхности частиц теплообмен в слое происходит весьма интенсивно и температуры во всем объеме слоя близки между собой. [c.595]

    К этому тину отрюсятся аппараты, в которых теплообмен осуществляется путем непосредственного контакта потока газа или жидкости с твердым грапулироваР1ным материалом. Подобный теплообмен может протекать в сплошном слое гранулпрогшпного материала, в потоке летящих или падающих частиц и в псевдоожиженном слое тиердого материала. [c.574]

    Сходство между жидкостью и слоем проявляется при помещении в него перемешиваюишх устройств. Закономерности макросмешения в псевдоожиженном слое твердых частиц и жидкости сопоставимы при барботаже газа. Однако аналогия с жидкостью наблюдается лишь при пропускании через зернистый слой достаточного для его псевдоожижения кол-ва газа. Напр., если газ вводят неравномерно по сечению слоя, возникают зоны, где частицы неподвижны. Такие неподвижные (застойные) зоны могут образовьшаться на разл. конструкц. элементах аппарата (на внутр. теплообменных устройствах и др.). В застойных зонах могут протекать нежелательные побочные процессы, возникать агломераты твердых частиц и т. д. Если в ходе хим.-технол. процесса частицы укрупняются, возможно прекращение П. [c.134]

    Сырье насосом 22 подается в змеевик нагревательной печи 9 через теплообменные аппараты 21, где нагревается примерно до 200°С за счет тепла отходящих потоков. Нагретое в печи до 270°С, сырье поступает в узел смещения с катализатором. Полученная суспензия под давлением водяного пара перемещается по наклонному лифт-реактору 6 в реактор-сепаратор 7. Одновременно в другой узел смешения подается рециркулят и по стояку 5 поступает в псевдоожиженный слой реактора 7. В лифт-реакторах распыленное специальными устройствами сырье вместе с потоком пара встречается с нагретым катализатором, опускающимся из регенератора по стоякам 2 и 4, в результате чего возникает поток, скорость которого превышает скорость оседания частиц микросфери- [c.53]

    Многочисленные экспериментальные исследования, обобщенные в [7, 48, 54-57], показали, что движение частиц твердой фазы, начинающееся после достижения восходящим газовым потоком критической скорости начала псевдоожижения и ,, резко интенсифицирует процесс теплообмена между всей массой слоя и теплообменной поверхностью по сравнению с теплообменом стенки и неподвижного слоя дисперсного материала. Увеличение коэффициента теплоотдачи к стенке а ,, вначале значительное, по мере дальнейшего повышения скорости газа уменьшается. При некотором значении скорости газа Мопт коэффициент а , приобретает максимальное значение, и при дальнейшем увеличении скорости газа интенсивность теплообмена псевдоожиженного слоя с поверхностью уменьшается (рис. 4.2.5.1). Значение а , акс может достигать 600 Вт/(м К) при скорости газа, приблизительно в два раза превосходящей скорость начала псевдоожижения. В количественном отношении данные разных авторов различаются весьма значительно, особенно в области восходящей ветви кривой. Однако в области максимальных значений а , оказывается возможным простое обобщение опытных данных в виде корреляционной зависимости [c.258]


Смотреть страницы где упоминается термин Теплообмен частиц в псевдоожиженном слое: [c.168]    [c.444]    [c.595]    [c.546]    [c.173]    [c.589]   
Смотреть главы в:

Справочник химика. т.5 -> Теплообмен частиц в псевдоожиженном слое

Справочник химика Том 5 Изд.2 -> Теплообмен частиц в псевдоожиженном слое




ПОИСК







© 2025 chem21.info Реклама на сайте