Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение парафина в нефтехимической промышленности

    Парафиновые углеводороды с б —10 атомами С, кроме использования их к качестве специальных растворителей, находят лишь ограниченное применение в нефтехимической промышленности. Напротив, важную роль играют высокомолекулярные углеводороды с 10—20 атомами С. Газообразные члены парафинового ряда, содеря ащиеся в природном нефтяном газе, в газах, сопровождающих нефть при ее добыче, и в отходящих газах нефтеперегонных установок вследствие большой разницы в температурах кипения могут быть сравнительно простыми методами разделены па технически чистые индивидуальные углеводороды. Для получения углеводородов, кипящих при более высоких телгпературах, чем бутап, сырьем может служить газовый бензин, ниже рассматриваемый подробно. Из него методом четкой ректификации мояшо получать пентан, гексан и гептан. Парафино-пьте углеводороды с 6—10 атомами С и парафиновые углеводородьс с 10— 20 атомами С в настоящее время получают в чистом виде из нефтяных фракций посредством экстрактивной кристаллизации с мочевиной. Парафин, являющийся смесью высокомолекулярных парафиновых углеводородов преимущественно с прямой цепью, получают в больших количествах депара-финизацией масляных фракций. Продукт этот является чрезвычайно ценным сырьем. [c.10]


    Нефтеперерабатывающая промышленность обеспечивает потребность народного хозяйства в горючих и смазочных материалах. Кроме того, нефть расходуется на производство битумов, электродного кокса, парафинов и нефтехимического сырья. Продукты переработки нефти могут быть условно разбиты на следующие группы, различающиеся по составу, свойствам и областям применения  [c.329]

    Депарафинизация с использованием карбамида отличается от депарафинизации избирательными растворителями возможностью проведения процесса при положительных температурах. Здесь приводятся два варианта принципиальных схем процесса карбамидной депарафинизации, нашедших применение в отечественной нефтеперерабатывающей промышленности схема процесса, разработанного Институтом нефтехимических процессов Академии наук Азербайджанской ССР (ИНХП) и запроектированного ВНИПИнефти, и схема процесса, разработанного Грозненским нефтяным научно-исследовательским институтом (ГрозНИИ) и запроектированного Грозгипронефтехимом. Схемы различаются агрегатным состоянием карбамида, подаваемого в зону реакции комплексообразования, и, как следствие, аппаратурным оформлением реакторного блока, а также секций разделения твердой и жидкой фаз и регенерации основных реагентов. Кроме того, используются различные активаторы и растворители, хотя в обоих вариантах целевыми являются одни и те же продукты низкозастывающие дизельные топлива или легкие масла и жидкие парафины. [c.88]

    Парафины представляют собой смесь углеводородов метанового ряда нормального строения с 18—35 атомами углерода в молекуле. Вещества белого цвета кристаллического строения с температурой плавления 45—65 °С и молекулярной массой 300— 400. Парафины получают при депарафинизации дистиллятного масляного сырья. Применяют их в качестве сырья в нефтехимической промышленности при производстве моющих средств и поверхностноактивных веществ, для пропитки бумаги и бумажной тары, в производстве свечей и сиичек, в электротехнике, при выработке вазелинов, пластичных смазок, полировальных и защитных материалов. В зависимости от области применения парафины подразделяются на технические, высокоочищенные и для пищевой промышленности. [c.482]

    Применение парафина в нефтехимической промышленности [c.12]

    Парафины и церезины являются нежелательными компонентами в составе масляных фракций нефти, поскольку повышают температуры их застывания. Они находят разнообразное техническое применение во многих отраслях промышленности электро- и радиотехнической, бумажной, спичечной, кожевенной, парфюмерной, химической и др. Они применяются также в производстве пластичных смазок, изготовлении свечей и т.д. Особо важная современная область применения - как нефтехимическое сырье для производства синтетических жирных кислот, спиртов, поверхностно-активных веществ, деэмульгаторов, стиральных порошков и т.д. [c.73]


    Парафины и церезины находят разнообразное техническое применение во многих отраслях промышленности электро- и радиотехнической, бумажной, спичечной, химической, кожевенной, парфюмерной и др. Парафин как загуститель применяется также в производстве пластичных смазок. Особенное значение жидкие и твердые парафины имеют сейчас как сырье для получения белково-витаминных концентратов (БВК) на заводах микробиологического синтеза, а также синтетических жирных кислот, спиртов и поверхностно-активных веществ на заводах нефтехимического синтеза. [c.25]

    Одним из главных потребителей твердых парафинов и церезинов является нефтехимическая промышленность для синтеза жирных кислот, высших спиртов, поверхностно активных веществ и др. Находят они применение в пищевой промышленности, медицине и бытовой химии. Из щелочных отходов очистки керосиновых, соляровых и других дистиллятов раствором хлорида натрия высаливают соли органических кислот. Из них получают асидол и мылонафт, применяемые в мыловаренной, лакокрасочной промышленности, при крашении тканей и в качестве шпалопропиточного масла. [c.271]

    В своем развитии органический синтез разделился на ряд специфических отраслей — технологию пластических масс, синтетического каучука, химических волокон, красителей, лекарственных веществ и т. д. Среди них важное место занимает промышленность основного органического и нефтехимического синтеза. Главными ее объектами являются первичная переработка парафинов, олефинов, ароматических углеводородов, ацетилена и окиси углерода, а также производство многотоннажных продуктов органического синтеза. По химической природе это — синтетические углеводороды и их галогенпроизводные, спирты и фенолы, альдегиды и кетоны, карбоновые кислоты и их производные, нитросоединения и амины, т. е. вещества, на которых основан синтез других, более сложных органических соединений. По практическому значению их можно разделить на две главные группы 1) промежуточные продукты, используемые в промышленности основного органического и нефтехимического синтеза для получения различных ценных соединений или в других отраслях химической промышленности (например, мономеры для синтеза высокомолекулярных веществ и т. д.), и 2) продукты целевого применения (моющие средства, ядохимикаты, синтетическое топливо, смазочные масла, растворители ИТ. д.). [c.12]

    Одно из наиболее перспективных направлений применения процесса карбамидной депарафинизации — получение товарных нефтяных парафинов различных сортов, дальнейшее использование и переработка которых могут осуществляться по нескольким направлениям. В начале промышленного внедрения процесса карбамидной депарафинизации выделяемый мягкий парафин использовали в качестве сырья для термического крекинга. Несколько более квалифицированным можно считать использование его в качестве компонентов топлив для реактивных двигателей — когда после компаундирования выдерживаются требования по температурам застывания, помутнения и т. д. Наиболее правильно использовать мягкие парафины в нефтехимических производствах. Например, мягкие парафины после соответствующей очистки можно окислять до жирных кислот или жирных спиртов, крекировать или дегидрировать с получением непредельных соединений, сульфохлорировать с получением моющих веществ типа алкилсульфонатов, хлорировать с получением присадок к смазочным маслам, пластификаторов, средств пожаротушения и т. д. На основе мягких парафинов можно производить различные растворители без запаха, применяемые при приготовлении некоторых лаков, красок и защитных покрытий, а также в фармацевтической и парфюмерной промышленности. Можно также использовать мягкие парафины при производстве инсектицидов, не имеющих запаха, для сельского хозяйства и особенно для бытовых нужд, при изготовлении некоторых типографских красок горячей сушки и т. д. Однако шире всего парафины будут применяться при производстве синтетических жирных кислот и синтетических жирных спиртов, а также при производстве белково-витаминных концентратов. Целесообразность производства парафина различных сортов (в том числе мягкого) на базе существующих нефтеперерабатывающих заводов с последующей переработкой этих парафинов освещается в ряде работ [204, 205 и др.]. [c.131]

    Нефтеперерабатывающая и нефтехимическая промышленность вырабатывает самые разнообразные продукты газообразное и жидкое топливо, смазочные и специальные масла, консистентные смазки, битумы, технический углерод, парафин, нефтяные кислоты, кокс, синтетические спирты, синтетические жирные кислоты, полимеры, ароматические углеводороды, ацетон, фенол и многие другие технические и хи(11ические продукты. Требования ко всем этим продуктам исключительно разнообразны и диктуются постоянно изменяющимися условиями применения или эксплуатации того или иного копкре ого нефтепродукта. [c.4]


    Увеличение объема производства нефтепродуктов, расширение их ассортимента и улучшение качества в условиях, когда непрерывно возрастает доля переработки сернистых, высокосернистых и высокопарафинистых нефтей, потребовало ускоренного развития вторичных и особенно каталитических процессов. В СНГ с помощью катализаторов производят в настоящее время около 75 % всех продуктов химической, нефтеперерабатывающей и нефтехимической промышленности. Из новых химических процессов на применении катализаторов основано более 90 %. В нефтепереработке наиболее распространены каталитические процессы получения топлив — каталитический крекинг, риформинг, гидроочистка, алкилирование, изомеризация и гидрокрекинг. Каталитические процессы гидроочистки и гидрокрекинга используют также для производства высококачественных нефтяных масел и парафинов. [c.327]

    Каталитические реакции с поглощением или выделением водорода играют важную роль во многих отраслях промышленности химической, нефтеперерабатывающей и нефтехимической, медицинской, пищевой. Дегидрирование парафинов нефти позволяет получать мономеры каучука и других синтетических материалов. Дегидроциклизация парафинов приводит к ароматическим углеводородам, необходимым для производства красителей и многих других продуктов тонкого органического синтеза. Повышение содержания ароматических углеводородов в бензине путем дегидрирования нафтенов и дегидроциклизации парафинов улучшает его октановое число. Уберечь бензин от осмоления позволяет селективное гидрирование диеновых углеводородов в олефиновые. Гидрирование тройной связи до двойной — необходимый этап производства витаминов, душистых веществ и других ценных продуктов. Эти примеры, конечно, не охватывают всего разнообразия применений каталитического гидрирования и дегидрирования. Исследования этих процессов наряду с практически важными результатами дали ценную информацию о связи реакционной способности многих веществ с строением, о свойствах различных катализаторов, главным образом гетерогенных, видах адсорбции водорода на них и др. [c.96]

    Таким образом, для получения белковых питательных продуктов человечество начало применять нефть, нефтехимическое сырье (н. парафины) в промышленном масштабе. Крупно-промышленное производство белков из нефти ожидается в период 1966—1970 гг. Предполагают, что стоимость их будет более чем в 10 раз ниже, чем белков мяса. Применение белково-витаминных концентратов в животноводстве для откорма скота, свиней и птицы даст возможность получить дополнительно значительное количество мяса, молока и шерсти. Для получения казеина в СССР расходуется в год около 1 млн. т молока. Биохимические процессы и биокатализ являются одной из важных сторон жизни растительного и животного мира, они еще пока мало используются в жизни человечества, [c.28]

    В настоящее врем.ч отечественная промышленность вырабатывает широкий ассортимент твердых парафинов(с температурами плавления от 45 до 64°С), используемых в качестве сырья в процессах нефтехимического синтеза и многих других отраслях народного хозяйства. Особш-но многообразны области применения высокоочищенных сортов парафина. [c.60]

    Применение герметических реакторов подобного типа намечается для новых цехов по производству синтетических жирных кислот из мягких парафинов, метилэтил кетона, полиизобутилена и других продуктов нефтехимической промышленности. [c.329]

    А. Хоппе. Депарафинизация мочевиной. Основы процесса. Общие закономерности образования аддуктов мочевины с углеводородами нормального и разветвленного строения. Преимущества и недостатки депарафинизации мочевиной или растворителями и области применения обоих процессов. Промышленные процессы депарафинизации мочевиной, их схемы, аппаратурное оформление, оптимальные режимы. Применение для производства низкозастывающих топлив и масел, повышения октановых чисел бензинов, получения индивидуальных нормальных парафинов для нефтехимического синтеза. [c.392]

    Особенно большие экспериментальные возможности универсальные РХУ имеют для проведения исследований второй группы и наработки опытных партий целевых продуктов. На шестнадцати установках типа К-60000, используемых в различных учреждениях, проводились и проводятся многочисленные исследования, необходимые для разработки и внедрения РХП в некоторых отраслях промышленности. 1. Химическая промышленность — синтез полиэтилена, окисление бензола, синтез акрил-амида, синтез органохлорсиланов, синтез кремнеорганических -соединений, синтез радиационно-привитых сополимеров, сульфохлорирование углеводородов и др. Некоторые из этих процессов, например сульфохлорирование парафинов, нашли промышленное применение. 2. Нефтехимическая промышленность — вулканизация шин и резино-технических изделий, получение тер-мо- и морозостойкой изоляционной ленты на основе полигетеро-силоксанов, радиационная теломеризация углеводородов. Два последних процесса внедрены в промышленное производство. [c.153]

    Отмечавшая в 1962 г. свое первое десятилетие газо-жидкостная хроматография нашла исключительно обширное применение для анализа и разделения ароматических углеводородов. Высокая разделительная способность и необычайная гибкость метода позволяют сравнительно быстро идентифицировать ароматические углеводороды в присутствии парафинов, олефинов, нафтенов. Для осуш,ествления подобного анализа другими методами требуется дорогостоящая аппаратура и значительно большая затрата времени. Метод газо-жидкостной хроматографии весьма эффективен для качественного и количественного определения состава углеводородных смесей, получающихся в коксохимической, нефтехимической и нефтеперерабатывающей промышленности. [c.136]

    Масштабы развития нефтеперерабатывающей промышленности и характер применяемых технологических процессов переработки нефти на протяжении почти 50 лет диктовались главным образом потребителями бензина. Для удовлетворения возросших потребностей в бензине был применен процесс термического крекинга. Однако увеличение потребления бензина авиацией и повышение требований к качеству авиационных бензинов вызвали необходимость дальнейшего изменения технологии их производства. Под влиянием этих требований стали применять сначала процессы каталитического крекинга, а затем каталитические процессы производства высокооктановых компонентов авиабензинов (полимеризация и алкилирование), и риформинга низкокачественных бензинов прямой перегонки и термического крекинга. К концу второй мировой войны (1943— 1945 гг.) наиболее высококачественные авиационные бензины нередко содержали от 50 до 70% синтетических компонентов (алкил-бензолов, парафинов разветвленного строения и др.). Производство синтетических компонентов авиабензинов в крупнозаводских масштабах на основе нефтезаводских газов явилось решающим шагом на пути развития современной промышленности нефтехимического синтеза. [c.5]

    Несомненно, что развитие нефтехимической промышленности потребует дальнейшего серьезного расширения наших представлений о составе и свойствах нефтей и нефтепродуктов. В частности, должны быть развиты уже имеющиеся успехи в области создания методов исследования крекинг-бензинов и керосино-лигроиновых фракций, высокомолекулярных парафинов, смазочных масел и других продуктов нефтенереработкрг. Эти исследования должны быть подкреплены новыми методами изучения, основанными на последних достижениях физики. Необходимо широко использовать методы масс-спектроскоштческого анализа, применения инфракрасной спектрометрии, спектров поглощения в ультрафиолетовой области, возможно, парамагнитного резонанса и ряда других. [c.41]

    В дальнейшем для производства парафина может найти применение (в частности, для производства индивидуальных углеводородов, требуемых нефтехимической промышленностью) препаративная хромото-графия. [c.178]


Смотреть страницы где упоминается термин Применение парафина в нефтехимической промышленности: [c.172]    [c.4]    [c.14]    [c.436]   
Смотреть главы в:

Производство парафинов -> Применение парафина в нефтехимической промышленности




ПОИСК





Смотрите так же термины и статьи:

Применение в промышленности

Промышленность нефтехимическая



© 2025 chem21.info Реклама на сайте