Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химия и технология синтеза мономеров

    Рассмотрены основы химии и технологии важнейших мономеров для синтетических каучуков описаны механизмы, а также термодинамические и кинетические закономерности каталитических реакций, принципы математического моделирования и оптимизации технологических процессов. Детально разобраны основные технологические схемы производства мономеров, проанализированы экономические и экологические проблемы их синтеза. [c.2]


    ХИМИЯ и ТЕХНОЛОГИЯ СИНТЕЗА МОНОМЕРОВ НА ОСНОВЕ КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ АЛКИЛПРОИЗВОДНЫХ АРОМАТИЧЕСКОГО РЯДА  [c.36]

    Химия и технология синтеза мономеров на основе каталитического окисления алкилпроизводных ароматического ряда 36 [c.163]

    Широкое использование и высокие темпы роста производства полимеров обусловлены, в первую очередь, разнообразием их физических, химических и механических свойств. Для направленного изменения свойств, т. е для установления связи состав — структура — свойства необходимо владеть знаниями о структуре полимеров и способах се регулирования в процессе синтеза. Решение этой задачи требует серьезного анализа и обобщения обширной информации в области химии и физики поли.меров, накопленной за последние годы Отбирая эту информацию для учебного пособия, авторы руководствовались те.м, что в какой бы области полимерной науки и технологии ни работал специалист, он должен владеть знаниями не только в этой области. Действительно, современный химик-синтетик должен знать не только методы синтеза мономеров и полимеров, но и хорошо разбираться в том, как свойства получаемого им полимера зависят от химической природы исходных веществ— мономеров. Исследователь, занимающийся физикой и механикой поли.меров, должен иметь четкое представление об их химическом строении. Наконец технолог, работающий в области переработки полимеров, должен знать и химию полимеров, и их физические и эксплуатационные свойства, а также свойства их растворов. [c.5]

    Современный химик — синтетик должен знать не только методы синтеза мономеров и полимеров, но и хорошо разбираться в том, как свойства получаемого им полимера зависят от химической природы исходных веществ — мономеров. Исследователь, занимающийся физикой и механикой полимеров, должен иметь четкое представление об их химическом строении. Наконец, технолог, работающий в области переработки полимеров, должен знать и химию полимеров, и их физические и эксплуатационные свойства. [c.9]

    Рассмотрено современное состояние проблемы химии и технологии полимеров и сополимеров изобутилена с учетом новейших фундаментальных и технических достижений в этой области. Систематизированы и представлены практически все основные аспекты проблемы характеристика мономера, синтез (процессы тело-, олиго-, поли- и сополимеризации изобутилена, получение блок-, привитых- и фрагментарных сополимеров, особенности кинетики и катализа, теплового режима процесса, технологии производства, включающие и принципиально новые), свойства полимера (физические, химические, технические, специальные), композиции (смеси), области применения. [c.377]


    Традиционная синтетическая макромолекулярная химия обычно имеет дело с получением гомополимеров, построенных из однотипных мономерных единиц по всей цепи. Разработаны методы, позволяющие получать тысячи и миллионы тонн многих полимеров. Те же технологии позволяют в случае необходимости получать сополимеры, состоящие из двух (или более) сходных типов мономеров со статистическим распределением их по цепи- В частности, возможно получение гомополимеров или статистических сополимеров, состоящих из аминокислотных остатков, связанных между собой пептидными связями (полиаминокислот). Общей проблемой как при получении полиаминокислот, так и в синтезе нерегулярных полипептидов является образование пептидной связи. Если речь идет об образовании пептидной связи из аминокислот, то предварительно их надо прев- [c.283]

    Руководство этими работами на одном из химических заводов было возложено на В. А. Каргина, который сразу же поставил вопрос о необходимости создания научной лаборатории для разработки методов получения высококачественного органического стекла, которая выросла затем в самостоятельный Государственный научно-исследовательский институт хлорорганических продуктов и акрилатов (переименован в Научно-исследовательский институт химии и технологии полимеров имени академика В. А. Каргина). Деятельность лаборатории-института, которую В. А. Каргин направлял и координировал до конца своей жизни, привела к решению ряда важных научно-технических задач в области структурообразования в процессе полимеризации и переработки полимеров, старения полимеров и его влияния на изменение физико-механических свойств изделий, модификации полимеров в направлении улучшения их физико-механических свойств, синтеза новых мономеров и разработке способов их полимеризации. В результате были получены высококачественные органические стекла и многие другие полимерные материалы первостепенной практической значимости. [c.10]

    В своем развитии промышленность органического синтеза разделилась на ряд специфичных отраслей, среди которых важное место занимает промышленность основного органического и нефтехимического синтеза. Подобно основной неорганической химии и технологии, термин основной (или тяжелый ) органический синтез охватывает производство многотоннажных органических веществ, служащих базой для всей остальной органической технологии. Главным объектом основного органического синтеза является первичная переработка пяти видов исходных веществ в другие продукты — различные углеводороды, хлорпроизводные, спирты и эфиры, альдегиды и кетоны, карбоновые кислоты и их производные, фенолы, нитросоединения и амины, т. е. вещества, на которых основано получение всех других органических продуктов. По практическому назначению продукты основного органического синтеза можно подразделить на две главные группы 1) промежуточные продукты для синтеза других веществ в этой же или в других отраслях химической промышленности,- в том числе мономеры и исходные вещества для получения полимерных материалов 2) продукты целевого применения поверхностно-активные и моющие вещества, ядохимикаты и химические средства защиты растений, растворители и экстрагенты, синтетическое топливо и смазочные масла, пластификаторы и т. д. [c.10]

    В работах,. представленных в сборнике, рассмотрены вопросы синтеза мономеров, изучения их свойств и реакций лоли-меризации и сополимеризации. Часть работ посвящена химии и технологии синтетического каучука рассматриваются способы получения сажемаслонаполненных каучуков, методы выделения стереорегулярных каучуков и ряд других вопросов из этой области. Представлены работы, касающиеся коллоидной химии синтетических латексов. В некоторых работах, помещенных в сборнике, рассмотрены новые методы контроля лроизводства и автоматизации управления технологическими процессами в промышленности синтетического каучука. [c.3]

    Вопрос о применении электрохимического синтеза органических веществ в промышленности обсуждается в научной литературе уже свыше 40 лет. Конечно, за эти годы произошли большие изменения в химической технологии. Стала более дешевой и доступной электроэнергия, произошли большие успехи в химическом аппаратостроении и в автоматизации контроля производственных процессов, возросла культура труда. Многое сделано в фармацевтической химии, химии душистых веществ и витаминов. Бурно развивается промышленность, производящая хлорсодержащие и фторсодержащие органические вещества, а также мономеры. Все эти отрасли химии нуждаются в эффективных способах производства, позволяющих получать продукты высокой степени чистоты с минимальной затратой сырья и материалов. [c.4]


    В связи с появлением за последнее десятилетие новых научно-технических разработок, с проведением реконструкции и технического переоснащения действующих заводов, с принципиальным изменением ряда процессов синтеза элементоорганических мономеров и полимеров стало необходимым выпустить второе издание учебника, тем более что в настоящее время насущной задачей является подготовка высококвалифицированных химиков-технологов, глубоко знающих современную химию и технологию получения элементоорганических мономеров и полимеров, их свойства и области применения. [c.7]

    Как известно, существующий ассортимент промежуточных продуктов создается таким образом, чтобы на его основе можно было получить конкретные красители, лекарственные препараты, вспомогательные вещества, мономеры для синтеза полимеров с экстремальными свойствами и т. д. В нашем практикуме задачи по получению промежуточных продуктов введены как составной элемент задач синтеза конечных продуктов — органических красителей. Последние сгруппированы но классам так, как это рекомендуется в известном учебнике Б. И. Степанова Введение в химию и технологию органических красителей . Работу с практикумом надо проводить в тесной связи с этим учебником, а также с учебным пособием А. С. Эфроса и И. Я. Квитко Химия и технология ароматических соединений в задачах и упражнениях , материал которых дает теоретическую базу для проведения описываемых синтезов. [c.3]

    Предназначена для научных и инженерно-технических работников, занятых в области органического синтеза и катализа, нефтехимии, химии и технологии лекарственных веществ, мономеров и полимеров, красителей, кинофотоматериалов, топлив и масел, переработки горючих ископаемых и др. [c.296]

    Работа по созданию новой, приемлемой для промышленности технологии проводилась Технологической лабораторией в содружестве с другими лабораториями ИОХ АН СССР (Лабораторией виниловых соединений, Лабораторией химии полимеров. Лабораторией каталитического синтеза и Лабораторией тонкого органического синтеза), а также с Кафедрой кибернетики химикотехнологических процессов МХТИ им. Д. И. Менделеева и Всесоюзным научно-исследовательским и проектным институтом мономеров (г. Тула). В разработке технологии участвовали сотрудники ИОХ АН СССР М. Ф. Шостаковский, В. Ф. Кучеров, [c.4]

    Второй период в развитии химии и технологии полимеров начинается с 1902 г. В этот период, наряду с использованием природных полимеров, интенсивно развивается химия синтетических полимеров, осуществляется переход от реакций химического превращения природных полимеров к реакциям их синтеза из мономеров. Делается решающий шаг к получению полимеров с заданными свойствами, то есть к проектированию новых видов ПМ. Второй период в истории полимеров опирается на крупнейшие достижения теоретической и прикладной органической химии по синтезу мономеров и изучению процессов их полимеризации и поликонденсации. К ним, в первую очередь, относятся работы A.B. Лебедева по полимеризации бутадиена (1908— 1912 гг.), И.И. Остромысленского по синтезу каучука (1911—1917 гг.), Б.В. Бызова по химии и технологии каучука и резины (1913—1915 гг.), Л. Бэкеленда и Г.С. Петрова по синтезу фенолоформальдегидных полимеров (1906 г.) и другие. [c.381]

    Б химии и технологии ацетилена за последние 20 —30 лет достигнуты исключительные успехи. Внедрены в промышленность новые, более дешевые-способы получения ацетилена из углеводородного сырья. На основе реакщй гидратации, гидрОхлорирования, гидроцианирования, димеризации, ванв-лирования и других во многих странах получают ван нейшие полупродукт современного органического синтеза —мономеры в производстве каучука, пластмасс, искусственного волокна, полупродукты в синтезе красителей, растворителей, медикаментов и т. п. [c.3]

    Огромный материал, накопленный в последние годы в этой области и обобш,енный в монографиях и учебниках, посвящен главным образом химии и технологии процессов полимеризации и недостаточно отражает вопросы синтеза исходных мономеров, которые определяют состояние и экономику отрасли в целом. [c.6]

    Теория цепных процессов послужила главной внутринаучной предпосылкой также и для взаимосвязанных процессов развития химии и химической технологии синтетических полимеров. Были выяснены многочисленные закономерности, относящиеся к процессам полимеризации, начиная с количественного определения реакционной способности данного мономера и образовавшегося из него радикала и кончая рекомендациями по регулированию молекулярной массы получаемых полимеров. Установлен механизм инициирования реакций при различных способах генерирования радикалов, взаимодействия радикалов с молекулами мономера, растворителя, ингибиторов. Развита теория сополимеризации. Технологическим следствием работ в области цепной теории полимеризации явилась детальная разработка в 1938—1940-х годах процессов синтеза полиэтилена высокого давления, полистирола, поливинилового спирта, поливинилхлорида, полиакрнлатов, полиизобутилена, коренное [c.149]

    В качестве примеров цля проведения термодинамических расчетов выбраны реакции термического разложения, термоокислительного пиролиза и конверсии нормальных углеводородов 1... 5 парами воды и диоксидом углерода с образованием в результате реакции алкенов, диенов, сит1тез-газа. Представлены процессы получения углеводородного сырья для нефтехимического синтеза, производства углеводородных мономеров для синтетте-ских материалов, синтеза различных кислородсодержащих соединений, подробно изложенных в учебнике Технология нефтехимического синтеза (Адельсон С.В., Вишнякова Т.П., Паушк1ш Я.М. -М. Химия, 198,5. -608 с.). [c.4]

    Целью проекта является разработка научных основ химии и технологии получения разнообразных полифункциональных ароматических и циклических соединений - циклогексанона, циклогексаноноксима, ряда новых сульфохлоридов на основе метил- и галогензамещенных сульфонов, алкиленкарбонатов на основе олефинов 3- 12, алкларенсульфонатов и белых масел технического и медицинского назначения - новьгх реактивов, мономеров для синтетических волокон, термостойких пластмасс и материагюв специального назначения с использованием хорощо апробированных в промышленности органического синтеза реакций окисления, сульфирования и карбоксилирования. [c.63]

    О. широко распространены в природе (напр., битумы, высокомол. парафины, компоненты нефти) и входят в состав живых организмов (олигопептиды, олигонуклеотиды), но наиб, практическое применение находят синтетич. О., в первую очередь реакционноспособные. При их переработке совмещают в одной операции стадию синтеза собственно полимера и изготовление изделия (т. наз. хим. формование). Этот метод по сравнению с технологией, основанной на использовании высокомол. полимеров, имеет существ, преимущества, т. к. жидкие или легкоплавкие О., даже при высоком содержании наполнителей, можно превратить в изделия формованием без использования высоких т-р и давлений, а также р-рителей. По фавнению с мономерами О. менее летучи и токсичны и их отверждение при хим., радиационном или фотоинициировании происходит со значительно меньшими тепловыми эффектами и усадками. [c.376]

    В предыдущих главах были рассмотрены, хотуТ к далеко не в полной мере, успехи катализа, достигнутые на различных ступенях его развития. Как видно, эти успехи огромны, и не будет преувеличением утверждать, что они в основном теперь определяют общие успехи химии все важнейшие достижения химической технологии связаны с промышленным, в особенности гетерогенным, катализом. Именно гетерогенный катализ позволил решить такие задачи, которые были не под силу классическим методам синтеза, и в первую очередь задачи, связанные с прямым превращением предельных нефтяных углеводородов в непредельные углеводородные мономеры, в спирты, альдегиды, кетоны и кислоты, в различные другие функциональные производные, в карбо- и гетероциклические соединения.,  [c.112]

    Применение в химии и технологии полимеров. Сырье для синтеза полимеров и мономеров. На основе алифатич. и ароматич. А. получают полиамиды, полиимиды, полимочевины, амино-алъдегидные смолы. В большом количество они применяются для синтеза диизоцианатов (см. Изоцианаты). Кроме того, алифатич. А. применяют для синтеза анионообменных смол. [c.63]

    Среди галогенсодержащих полиолефинов наибольшее внимание привлекал поливинилхлорид. В 1918 г. И. И. Остромысленский осуществил его синтез из хлористого винила. Позднее в области синтеза поливинилхлорида работали И. П. Лосев, Б. Н. Рутовский, Г. М. Павлович и др. В результате на основе хлорсодержащих мономеров — хлористого винила и хлористого винилидена — были созданы промышленные способы получения соответствующих пластиков. В 70-х годах важный комплекс теоретических и практических работ в области поливинилхлорида и композиций на его основе, а также разнообразных полиакрилатов был проведен во Всесоюзном научно-исследовательском институте химии и технологии полимеров им. В. А. Каргина. [c.126]

    Сборник составлен на основе докладов, представленных на III Все-союзную конференцию пв химии и технологии ацетилена. Он посвящен теоретическим вопросам химии ацетилена, методам синтеза органических и влементоорганических полифункционалънглх еетероатомных мономеров винилового, ацетиленового и винилацетиленового рядов, а также полимеро на основе перечисленных соединений, синтезу биологически активных веществ, новейшим достижениям в области производства ацетилена и его> промышленного использования. [c.2]

    Современные процессы синтеза изопрена обладают рядом особен,-ностей а) массовость производства в сочетании с довольно высокой стоимостью получаемого продукта б) исключительно высокое качество вырабатываемого изопрена (чистота мономера не ниже 98,5— 99,0%) в) сложность технологии — применение техники высоких температур и давлений, агрессивность сред, жесткие требования техники безопасности, необходимость очистки загрязненных стоков и т. д. г) использование всего комплекса последних достижений химии и химической технологий. Так, в производстве изопрена широко применяются новые направления синтетической химии, например, использование комплексных гомогенных каталитических систем, инициированный крекинг, сопряженное окисление, окислительное дегидрирование, диспропорционирование углеводородов и др. наиболее прогрессивные конструкции реакторов (с псевдоожиженным слоем, туннельные с подвижным слоем катализатора, секционированные и адиабатические и т. д.), наконец, новейшие методы выделения и очистки продуктов — четкая, сверхчеткая, азеотропная и экстрактивная ректификация, в том числе вакуумная и под давлением, экстракция, топкие методы химической очистки и т. д. [c.9]

    Приведенные данные о реакциях ГАОС с протонодонорными соединениями, и прежде всего с водой, открывают ранее не известную область комплексообразования в этих системах. Отличительными особенностями образования донорно-акцепторных комплексов подобного типа являются сохранение металлоорганической функции (согласно представлениям координационной химии непереходных элементов [75] вследствие взаимного влияния лигандов связь А1—С должна даже усиливаться) и их слабая бренстедовская кислотность. Последний из названных признаков отличает рассматриваемую группу комплексов, особенно комплексов ГАОС с водой, от традиционных кислот Бренстеда и Льюиса. Очевидно, не последнюю роль в проявлении кислых свойств комплексов играет нуклеофильность оснований (мономера), с чем и связано появление таких свойств, как селективность действия. Помимо дальнейшего всестороннего изучения явления комплексообразования ГАОС полученные результаты стимулировали широкое использование комплексов в промышленном электрофильном катализе. Актуальность подобных работ, имея в виду ограниченные возможности AI I3 и возрастающий дефицит в нем, несомненна. Ряд удачных решений (разработка технологии получения бутилкаучука и полиизобутнленов и неплохие перспективы в синтезе алкилпроизводных ароматических углеводородов и т. д.) вселяют надежды на плодотворность дальнейших усилий по внедрению новых катализаторов в промышленность. [c.12]

    Альдегиды и кислородсодержащие гетероциклические соединения, как правило, полимеризуются по ионным механизмам. Ионная полимеризация даже применительно к винильным мономерам и диенам, изучена далеко не полно. В случае альдегидов и окисей исследователи сталкиваются с еще более сложными проблемами, связанными с еще большим разнообразием конкретных механизмов и факторов, влияющих на кинетику реакций, строение и свойства образующихся продуктов. Монография Фурукавы и Саегусы подводит итоги начального этапа исследований в новом, перспективном нанравленни. Она, конечно, не претендует на исчерпывающие обобщения. В ряде случаев при рассмотрении механизмов реакций из-за недостатка экснериментальных данных авторы вынуждены ограничиться качественными рассуждениями и предположениями. Ценность книги состоит прежде всего в том, что она вводит читателя в одну из увлекательных областей современной химии полимеров, фиксирует внимание на ее наиболее важных аспектах, вооружает комплексом сведений и представлений, необходимых для дальнейших поисков и технологических разработок. Ее с интересом прочтут химики-исследователи и технологи, занимающиеся синтезом полимеров из альдегидов и окисей и их переработкой. Кроме того, книга полезна для широкого круга научных работников, преподавателей и студентов, интересующихся п )облемами химии полимеров. [c.6]


Библиография для Химия и технология синтеза мономеров: [c.120]    [c.161]    [c.61]    [c.483]    [c.360]    [c.107]    [c.179]    [c.209]    [c.248]   
Смотреть страницы где упоминается термин Химия и технология синтеза мономеров: [c.247]    [c.5]    [c.511]    [c.113]    [c.5]    [c.8]    [c.5]    [c.216]    [c.53]    [c.8]   
Смотреть главы в:

Химия и технология мономеров для синтетических каучуков -> Химия и технология синтеза мономеров




ПОИСК





Смотрите так же термины и статьи:

Синтез мономеров



© 2025 chem21.info Реклама на сайте