Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства комплексных соединений переходных металлов

    Данная глава представляет собой краткое введение в обширную область химии, которая посвящена комплексным соединениям переходных металлов. Многообразие и трудность интерпретации химических свойств этих соединений обусловлены наличием у них тесно расположенных энергетических уровней, связанных с -орбиталями металла. Путь к пониманию химии переходных металлов заключается в объяснении того, каким образом лиганды возмущают эти энергетические уровни металла. Теория валентных связей и теория кристаллического поля частично объясняют этот эффект, но в настоящее время наиболее плодотворной является теория поля лигандов. [c.246]


    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]

    N0", МНз). При этом менее выгодные -орбитали заполняются электронами лишь после полного заполнения более выгодных. Теория кристаллического поля предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си " , Сг + и др.). Эта теория объясняет цвет соединений и магнитные свойства комплексов переходных металлов. Для ионов с внешней электронной конфигурацией 5 р теория не дает каких-либо интересных результатов. Для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии я-взаимодействия, эта теория также мало пригодна. Теория кристаллического поля наиболее эффективна для описания высокоспиновых комплексных соединений переходных металлов и /-элементов. [c.20]

    Теория поля лигандов дает простую модель для описания связей в комплексных соединениях переходных металлов и позволяет выяснить, как влияют лиганды на вырождение пяти -орбиталей металла. Рассмотрение такого влияния, как будет показано в этой и следующих главах, помогает понять и даже до некоторой степени предсказать строение, спектры и магнитные свойства комплексов. [c.91]

    Лев Александрович Чугаев принадлежит к числу наиболее выдающихся советских химиков. Родился в Москве, в 1895 г. окончил Московский университет. В 1904— 1908 г. — профессор Московского высшего технического училища, в 1908—1922 г. — профессор неорганической химии Петербургского университета и одновременно (с 1909 г.) — профессор органической химии Петербургского технологического института. Занимался изучением химии комплексных соединений переходных металлов, в особенности металлов платиновой группы. Открыл много новых комплексных соединений, важных в теоретическом и практическом отношениях. Чугаев впервые обратил внимание на особую устойчивость 5- и 6-членных циклов во внутренней сфере комплексных соединений и охарактеризовал кислотно-основные свойства аммиакатов платины (IV). Он был одним из основоположников применения органических реагентов в аналитической химии. Много внимания уделял организации и развитию промышленности по добыче и переработке платины и платиновых металлов в СССР. Создал большую отечественную школу химиков-неоргаников, работающих в области изучения химии комплексных соединений. [c.588]


    Открытие в 1951 г. Кили и Посоном [1] ферроцена послужило началом бурного развития химии металлоорганических соединений металлов переменной валентности. К настоящему времени практически для всех п-комплексных соединений переходных металлов (—30) развиты представления о структурах и свойствах [2]. [c.242]

    Химическое отделение Направление научных исследований аналитическая химия определение следов элементов с помощью нейтронно-активационного анализа каталитические реакции в газовой фазе электроосаждение термодинамика растворов рентгеноструктурный анализ неорганических комплексов ЯМР и ИК-спектроскопия электронные свойства атомов и радикалов пиролиз в пламени органические комплексы германия, молибдена и ванадия комплексные соединения переходных металлов органические перекиси органические соединения серы химия ацетилена и алициклических соединений химия силоксанов полимеры и переработка пластмасс. [c.251]

    Теория кристаллического поля на основе представлений о расщеплении уровней uf-электронов дала возможность объяснить ряд особенностей свойств некоторых комплексных соединений переходных металлов. Однако учет в основном лишь электростатического взаимодействия между ионом металла и лигандами не может отразить всей сложности соотношений, наблюдаемых в различных случаях. Необходимо учитывать также и влияние возможного перекрывания орбиталей иона и лиганда и привлечь метод молекулярных орбиталей для построения теории рассматриваемого явления в целом. На этой основе и получила развитие теория поля лигандов. [c.730]

    Органические соединения остальных переходных элементов. Переходные элементы остальных (кроме ПБ) побочных подгрупп периодической системы в проявляемых их атомами степенях окисления имеют незавершенные электронные -подоболочки предвнешнего уровня. Поэтому, наряду с образованием ординарной полярной ковалентной связи с углеродом за счет вклада внешних з- и р-орбиталей, они способны образовывать совершенно иные по строению и свойствам соединения за счет участия ( -орбиталей. В таких соединениях металл можно так же, как и соединения магния, бора, алюминия (см. выше), считать координационно ненасыщенным. Данная ненасыщенность металла теперь определяется наличием вакантных орбиталей не только на внешнем, но и на втором снаружи энергетических уровнях его атома. Природа вакантных орбиталей атома переходного элемента также отличается от орбиталей в- и р-элементов. Симметрия и пространственная протяженность -орбиталей переходного элемента позволяет им эффективно перекрываться с орбиталями большего числа атомов и удаленных на большее расстояние от металла, чем это возможно для з-или р-элемента. Поэтому часто органические соединения переходных металлов являются комплексными. С примерами таких комплексных элементоорганических соединений мы уже встречались ферроцен, дибензолхром, хелаты и др. (разд. 13.4). [c.599]

    Природа центрального иона (электронная конфигурация, размер и степень окисления) определяет многие свойства комплексного соединения, в том числе окраску, термическую устойчивость, магнитные и другие свойства. Комплексообразователем могут быть как непереходные, так и переходные металлы, последние значительно чаще. Поэтому химию комплексных соединений часто отождествляют с химией переходных элементов. [c.370]

    Электростатическая теория очень наглядна, и потому для качественных выводов ею широко пользуются и теперь. Однако она не в состоянии объяснить целый ряд фактов 1) почему существуют комплексы с неполярными лигандами и комплексообразователем в нулевой степени окисления, например [Ре(С0)5], [Са(ЫНз)е] и др. 2) почему комплексы переходных металлов второго и третьего рядов характеризуются большей устойчивостью по сравнению с комплексами переходных металлов первого ряда. При одинаковом заряде размеры ионов второго и третьего рядов переходных металлов больше, чем у первого, и поэтому по электростатическим представлениям комплексы тяжелых металлов должны были быть менее устойчивыми 3) чем обусловлены магнитные и оптические свойства комплексных соединений. [c.161]

    В табл. 24 не приведены орбитали -типа (для / = 2, т = О, 1, 2). Однако знание этих орбиталей существенно для понимания свойств комплексных соединений и так называемых переходных металлов. Имеется пять различных собственных функций й-типа в соответствии с пятью возможными значениями магнитного квантового числа. Однако все пять функций соответствуют одному и тому же значению энергии (о вырождении по магнитному квантовому числу мы уже говорили выше). Форма -орбиталей приведена па рис. 228. [c.192]

    Отличительная черта химии переходных металлов — изменяемость их степеней окисления. Из более чем пятидесяти металлов, соединения которых составляют предмет этой статьи, лишь шесть обычных переходных элементов (скандий, иттрий, лантан, актиний, цинк и кадмий) и некоторые члены ряда лантанидов и актинидов не обнаруживают это свойство. В предлагаемом обзоре основное внимание будет уделено ряду степеней окисления в простых и комплексных фторидах, препаративным методам их получения и строению соединений поведение ионов фторидов переходных металлов в растворе будет освещено в одном из следующих томов. Последний обзор, дающий общую картину фторсодержащих соединений переходных металлов, имеет примерно десятилетнюю давность . С тех пор были сделаны заметные успехи, и в этой главе они будут подчеркнуты особо. [c.78]


    Теория кристаллического поля. В основе теории лежат фундаментальные труды Бете (1929) и Ван Флека (1932). Первоначально теория рассматривала расщепление ато1У1ных термов в кристалле и применялась для объяснения магнитных свойств кристаллов. Впоследствии она была использована также для объяснения спектров поглощения и ряда других свойств комплексных соединений переходных металлов и лантаноидов. Основные идеи теории  [c.237]

    С. В. Волковым) закономерности строения и свойств комплексных соединений переходных металлов и лантанидов в водных и неводных средах. Предложил (1966) оригинальный метод определения констант устойчивости комплексных соединений. Обнаружил и обосновал (1969) ненаправленное взаимное влияние лигандов в комплексных соединениях. Создал оригинальные каталитические методы определения ультрамикроколичеств различных элементов. Разрабатывает (с 1966) новое научное направление — бионеорганическую хлмию. [c.604]

    И ИХ свойств. Развитие представлений о химической связи в комплексных соединениях переходных металлов прошло четыре стадии. Оно началось с простейшей электростатической теории, которую сменила теория валентных связей, или локализованных молекулярных орбиталей в дальнейшем появилась теория кристаллического поля и, наконец, теория поля лигандов, или делокализованных молекулярных орбиталей. Каждая из этих теорий стала развитием предьщушей. Их последовательное рассмотрение является хорошим способом проследить за развитием представлений о химической связи и дает возможность показать, что одни и те же физические факты можно объяснить в рамках различных и на первый взгляд противоположных предположений. [c.223]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    Комплексные соединения переходных металлов обладают быми свойствами, удобными для их экспериментального исс дования. Этими свойствами являются наличие полос поглощения в длинноволновой — видимой — области спектра, парамагнетизм и наличие спектров ЭПР (за немногими исключениями, такими как МЪОг и НЬОа). Как уже сказано, симметричные комплексы характеризуются выразительными спектрами магнитного вращения и магнитного кругового дихроизма. [c.218]

    Характерная особенность связей второго типа состоит в том, что их образование сопровождается взаимным переносом электронов рассматриваемыми атомами. Распределение образующих связь электронов между двумя атомами зависит от конкретных электронных состояний, участвующих в образовании связи, и от значений электроотрицательности соответствующих элементов. Наиболее слабые взаимодействия, приводящие к образованию связи, наблюдаются в комплексных соединениях переходных металлов, где взаимодействие осуществляется между -электронами иона металла и S- или / -электронами, локализованными на донорном атоме лиганда. В качестве примеров можно привести следующие комплексы [Со еп)з]з+, [Fe(dipy)3] +, [№]з- [Сг(Сг04)з] - и т. д. Изучение спектроскопических и магнитных свойств этих комплексов позволило установить, что комплексообразование вызывает изменения состояния -электронов иона металла и частичное изменение электронного состояния рассматриваемой молекулы лиганда, однако электроны остаются, по существу, локализованными на индивидуальных частицах, которые образуют комплекс. Наиболее сильные взаимодействия, приводящие к возникновению связи, наблюдаются в случае атомов с частично заполненными s- или р-под обол очками. Примерами таких молекул могут служить Нг, Н2О, СН4, СбНб и др. [c.40]

    Для получения меченых соединений можно использовать реакции как гетерогенного, так и гомогенного катализа. Процессы, происходящие при использовании гомогенных катализаторов, более изучены. Знания в этой области существенно расширились в связи с развитием химии комплексных соединений переходных металлов, которые повторяют каталитические свойства металлов, но проявляют своё действие в гомогенной системе. Так, механизм гидрирования, если гидрирование осуществляется на дигидридных комплексах, может быть проиллюстрирован схемой, описывающей восстановление ненасыщенных соединений в присутствии (РЬзР)зкЬС1 [11]  [c.486]

    Органическая химия постоянно имеет дело с реакциями, которые осуществляются у определенного центра в сложной молекуле и, если это возможно, с высоким и предсказуемым уровнем стереоселективности. В свете большого опыта, накопленного органической химией, обычно возможно оценить, по крайней мере качественно, вероятность альтернативных путей реакции. Однако даже хорошо обоснованные предположения могут быть ошибочными. Поучительным примером являются эксперименты по синтезу витамина В 2, которые привели к пониманию Вудвардом роли орбитальной симметрии в органической химии. Ограниченность наших знаний в этом отношении очень сильно проявляется в случае гетерогенных реакций, которые выдвигают дополнительные проблемы, и, за исключением очень хорошо изученных случаев, гетерогенный катализ остается относительно эмпирической областью химии. Знания в этой области, однако, существенным образом расширились в связи с развитием химии комплексных соединений переходных металлов, которые повторяют каталитические свойства металлов, но проявляют свое действие в гомогенной сггстеме. Это развитие продвинуло вперед наше понимание катализа, сделав возможным интерпретацию реакций в строго молекулярных терминах. К тому же эти активные в гомогенной среде комплексы часто являются более селективными, чем их гетерогенные металлические двойники, или в выборе между различными функциональными центрами в молекуле, или в отношении более высокой стереоселективности. [c.9]

    Книга, написанная выдающимся химиком-металлоорга-ником Э. Фишером и его учеником Г. Вернером, представляет собой подробный обзор методов получения, свойств и строения комплексных соединений переходных металлов с диенами и нолиенами. Металлоорганические я-комплексы играют первостепенную роль как катализаторы или промежуточные продукты в промышленно важных процессах (полимеризация олёфинов и диенов по Циглеру — Натта, оксосинтез, окислв ние непредельных углеводородов и др,). [c.567]

    Подробный обзор методов получения, свойств и строения комплексных соединений переходных металлов с диенами и по-лиенами. Металлоорганические я-комплексы играют первостепенную роль как катализаторы или промежуточные продукты в промышленно важных процессах (полимеризация олефинов я диенов по Циглеру—Натта, оксосинтез, окисление непредельных углеводородов и др.). [c.4]

    В зависимости от свойств металлоорганических соединений переходных металлов и строения лигандов природа связи в комплексах может быть различной — от ионной до ковалентной . В комплексных соединениях первого типа атомы удерживаются электростатическими силами, действующими между ионами, из которых построены комплексы. Особенностью таких комплексов является перенос электронов от одних компонентов комплекса (доноров) к другим (акцепторам). Степень переноса электронов можно варьировать в широком интервале. Если комплексы обпа.яу-ются без участия ковалентной связи, то их называют комплексами с переносом заряда (КПЗ) [574]. Энергия образования КПЗ колеблется от десятых долей до нескольких кДж/моль. [c.108]

    Рональд Сидней Найхолм (1917—1971)—профессор Лондонского университета. Основные работы посвящены синтезу комплексных соединений переходных металлов, а также их стереохимии, спектральным и магнитным свойствам. [c.43]

    Успехи в области химии комплексных соединений позволяют избирать в качестве объектов исследования комплексы, строение и свойства которых в ряде случаев достаточно хорошо изучены. Оказывается возможным в той или иной мере предвидеть характер взаимодействия с органическим субстратом, приводящего к активным интермедиатам каталитического процесса. Знание свойств органических соединений переходных металлов облегчает построение и проверку гипотетических промежуточных стадий процесса и строения их участников. [c.93]

    Большое число химических и физико-химических работ посвящается молибдатам, вольфраматам и ниобатам. Вполне естественно, что именно в этих областях структурные работы приобретают особое значение. Привлечение к синтезу новых металлов и новых лигандов выявило новые формы строения комплексов, непривычные с точки зрения классических представлений о стереохимии комплексных соединений. Геометрия структурных элементов в карбонильных и я-комплексных соединениях переходных металлов, в соединениях металлов IV—VII групп с полидентат-ными лигандами, а иногда даже в галогенидах и оксогалогенидах бывает настолько необычной и неожиданной, что проводить интерпретацию физико-химических свойств соединений без их прямых структурных исследований становится все более рискованным. [c.3]

    Решающее значение для энергии промежуточного взаимодействия имеет, по-видимому, локальное взаимодействие, энергия которого определяется всей совокупностью химических свойств реагирующего вещества и катализатора, что делает очень сложной ее оценку. Существенную помощь оказывает аналогия с химизмом образования соответствующих простых соединений, в частности комплексных соединений переходных металлов, что отмечается в докладе Фельдблюма (15) и др. Для приближенных сравнительных оценок мояшо использовать теорию кристаллического поля и для более строгих — теорию поля лигандов, чему была посвящена блестящая лекция профессора Даудена, после которой нет необходимости на этом задерживаться. [c.443]

    Для ионов со степенью окисления + 2 и +3 оптимальным является координационное число 6 к таким комплексам относится множество соединений переходных металлов. Степень окисления + 1 оказывается слищком низкой, чтобы при построении комплексного иона обеспечить притяжение шести электронодонорных групп. Большинство комплексов, в которые входят ионы со степенью окисления Ч- 1, имеют меньшие координационные числа, например у Ag"" и u+ в комплексах А (ЫНз)2 + и U I2 координационное число 2. В некоторых случаях ионы со степенью окисления + 1 все же образуют устойчивые комплексы с довольно высокими координационными числами. Но в большинстве таких соединений, как, например, у комплексов Mn( N) и Mo( O)g, лиганды обладают особой способностью к я-связыванию, превосходящей обычные элек-тронодонорные свойства. [c.214]

    Эти свойства олефинов предопределили использование для реакций их олигомеризации широкого круга катализаторов, которые условно можно разделить на кислотные основные металлоорганические. В свою очередь, металлоорганические катализаторы подразделяют на три подгруппы алюмоорга-нические соединения, соединения переходных металлов, комплексные металлоорганические соединения. [c.18]

    Важнейшим проявлением специфики электронного строения и вытекающих отсюда химических свойств платиновых элементов является их склонность к образованию комплексных соединений. Элементы-металлы других групп периодической системы, особенно поливалентные элементы переходных рядов, также дают комплексные соединения той или иной устойчивости практически со всеми известными лигандами. Спецификой комплексных соединений платиновых элементов и прежде всего наиболее изученных комплексов платины и палладия является высокая прочность ковалентной связи, обусловливающая кинетическую инертность этих соединений. Последнее даже делает невозможным определение обычными методами такой важной характеристики комплекса, как его /Сует- Обмен лигандами внутри комплекса и с лигандами из окружающей среды также затруднен. Это позволяет конструировать, например, октаэдрические комплексы платины (IV), в которых все шесть лигандов различны. Такие системы могут существовать без изменения во времени состава как в растворах, так и в твердом состоянии. Мы уже отмечали, что, напротив, осуществить синтез столь раз-нолигандмых комплексов для элементов-металлов, образующих пре- [c.152]

    Долгое время химиков чрезвычайно занимала проблема образования химической связи в координационных комплексах. Во многих отношениях связь в комплексных соединениях ничем не отличается от связи в ковалентных молекулах образование направленных связей в обоих случаях приводит к возникновению линейных, тетраэдрических и октаэдрических структур. И все же координационные комплексы, особенно комплексные ионы переходных металлов, обладают некоторыми свойствами, которые не наблюдаются у большинства обычных молекул. Химикам не давали покоя многие вопросы, касающиеся строения и свойств таких комплексов. Почему, например, некоторые комплексы обладают плоско-квадратной структурой Почему одни комплексы инертны, а другие лабильны Как связана окраска комплексов с природой их лигандов [например, Си (НгО) имеет бледно-голубую окраску, Си(КНз) —темно-пурпурную, а СиС1 — зеленую] Каким образом зависят от природы лигандов магнитные свойства комплексов [скажем, Ре(Н20)б" обнаруживает парамаг- [c.413]

    Самые распространенные соединения переходных металлов содержат только один ион металла или иногда нейтральный атом, окруженный несколькими группами, называемыми лигандами, по отношению к которым металлы обладают свойствами лыоисовых кислот (т. е. акцепторов электронов). В качестве лигандов могут выступать отдельные атомы нли одноатомные (простые) ионы, но ими могут быть также многоатомные (комплексные) ионы илн молекулы, Единственным требованием, предъявляемым к лигандам, является наличие у них неподелен-ных пар электронов, которые они могут обобществлять с металлом. Связь такого тнпа, когда оба электрона, образующие связывающую электронную пару, поставляются только одной частицей, принято называть координационной ковалентной связью (иначе донорно-акцепторной или дативной связью). Обсуждаемые комплексы часто называют координационными комплексами. Число лигандов, окружающих металл в комплексе, называется координационным числом металла. [c.313]

    Na[Al(OH)J + СО2 = А1(0Н)з>1 + NaH Og. Переходные металлы и их соединения Переходные металлы — это элементы с валентными d - или f - электронами (элементы побочных подгрупп периодической системы). Эти элементы обладают рядом характерных свойств переменные степени окисления, способность к образованию комплексных ионов образование окрашенных соединений. [c.260]

    Основные научные работы посвящены каталитической химии и химии координационных соединений. Исследовал (1942—1946) строение и свойства комплексных соединений титана. Занимался (с 1947) рещением проблемы фиксации атмосферного азота посредством комплексных металлоорганических катализаторов. Установил строение некоторых комплексов переходных металлов с олефинами, алкильными и арильными производными алюминия и других металлов нашел факторы, повыщающие реакционную способность таких комплексов, особенно в процессах связывания атмосферного азота. [322] [c.554]

    Теория кристаллического поля, с которой Вы познакомились в предыдущей главе, получила ишро-кое распространение для объяснения свойств соединений переходных металлов и, в частности, комплексных соединений. Вместе с тем эта теория, основанная на предположении о чисто ионном характере связи между комплексообразователем и лигандами, оказывается бессильной при интерпретации некоторых свойств комплексов, например, влияния природы лигандов на стабильность комплексных ионов. В последнее время для объяснения относительной стабильности молекул и молекулярных ионов, а также свойств комплексных соединений широко используется теория молекулярных орбиталей (ТМО), которая в отличие от ТКП учитывает и ионный, и ковалентный вклады в образование химической связи. В этой главе Вы более последовательно, чем раньше, ознакомитесь с основными положениями и возникновением использования ТМО в неорганической химии. [c.141]

    В последние годы получен ряд убедительных доказательств того, что действие катализатора Циглера—Натта в первую очередь обусловл ено свойствами промежуточных металлоорганических соединений переходных металлов, являющихся основой активных центров полимеризации. При этом активность комплексных металлоорганических катализаторов в значительной степени определяется свойствами лабильных связей углерод — переходный металл. Поэтому целесообразно сначала рассмотреть имеющиеся сведения и существующие представления о механизме и некоторых особенностях взаимодействия между компонентами различных типов комплексных металлоорганических катализаторов. [c.12]


Смотреть страницы где упоминается термин Свойства комплексных соединений переходных металлов: [c.44]    [c.88]    [c.29]    [c.570]    [c.101]    [c.7]    [c.288]   
Смотреть главы в:

Основные законы химии. Т.2 -> Свойства комплексных соединений переходных металлов




ПОИСК





Смотрите так же термины и статьи:

Металлы переходные

Металлы свойства

Металлы соединения

Переходное соединение



© 2025 chem21.info Реклама на сайте