Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы обнаружения и разделения в аналитической химии

    МЕТОДЫ ОБНАРУЖЕНИЯ И РАЗДЕЛЕНИЯ В АНАЛИТИЧЕСКОЙ ХИМИИ [c.524]

    РЕАГЕНТЫ ОРГАНИЧЕСКИЕ в аналитической химии (ОР), орг. соединения разл. классов, служащие для качеств, обнаружения или количеств, определения хим. элементов, функц. групп и соед., а также для разделения, концентрирования, маскирования и др. вспомогат. операций, предшествующих или сопровождающих определение в-в любыми методами. [c.201]

    Комплексные соединения находят широкое применение для обнаружения ионов, повышения избирательности реакций, маскировки и демаскировки ионов, а также в различных химических и физико-химических методах определения и разделения элементов. Наиболее интересными и перспективными комплексными соединениями являются соединения ионов металлов с комплексонами (полидентатные лиганды). Использование комплексонов в аналитической химии расширило возможности титри- [c.184]


    Помимо важной роли в комбинированных методах анализа меюды разделения и концентрирования имеют для аналитической химии суперэкотоксикантов самостоятельную ценность. Далеко не всегда можно проанализировать образец без предварительного выделения определяемых соединений из природной матрицы. При этом, как правило, возникает необходимость их концентрирования по отношению к матричным компонентам, присутствующим в растворе или в газовой фазе. Даже такие методы, как хромато-масс-спектрометрия и газовая хроматография в сочетании с ИК-спектроскопией, не всегда могут решить задачи следового анализа. Целью концентрирования является снижение нижнего предела обнаружения, тогда как разделение позволяет упростить анализ и устранить влияние мешающих веществ [c.199]

    Разделения методы (в аналитической химии) — важнейшие аналитические опера ции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие другие элементы. Для разделения при меняют осаждение, электролиз, экстракцию, хроматографию, дистилляцию, зонную плавку и другие методы. В качественном анализе для разделения ионов элементов применяют групповые реагенты, которые позволяют трудно разрешимую задачу анализа сложных смесей привести к нескольким сравнительно простым задачам. Рассеянные элементы — химические элементы, которые практически не встреча ются в природе в виде самостоятельных минералов и концентрированных залежей а встречаются лишь в виде примесей в различных минералах. Р. э. извлекают попутно из руд других металлов или полезных ископаемых (углей, солей, фосфори тов и пр.). К Р. э. принадлежат рубидий, таллий, галлий, индий, скандий, германий п др. [c.111]

    Быстрое развитие аналитической химии в последнее время происходило главным образом в области новых аналитических методов, опиравшихся на разработку соответствующей приборной техники однако истинной основой многочисленных методов обнаружения, разделения и определения все еще остается химическая реакция подходящего реагента с определяемым веществом. Решающую роль играют органические реагенты, широко применяемые в спектрофотометрических (колориметрических) методах, титри-метрии (в качестве титрантов и индикаторов), капельном анализе [c.7]

    Вследствие своей универсальности ионообменно-хроматографический метод с успехом применяется для решения разнообразных задач аналитической химии для обнаружения, разделения, концентрирования, а также определения неорганических и органических соединений, находящихся в водных или водно-органических растворах в виде ионов. Особенно эффективно используется ионообменная хроматография при анализе неорганических соединений. С помощью ионообменных сорбентов возможно разделение смесей любой сложности. [c.190]


    Все существующие методы аналитической химии можно разделить на методы пробоотбора, разложения проб, разделения компонентов, обнаружения (идентификации) и определения. Существуют гибридные методы, сочетающие разделение и определение. Методы обнаружения и определения имеют много общего. [c.8]

    Периодический закон был открыт Д. И. Менделеевым на базе данных об относительных атомных массах элементов, о свойствах элементов и их соединений, которые были установлены главным образом с помощью методов аналитической химии. Закон позволял прогнозировать свойства неоткрытых элементов и их соединений, способы их разделения, выделения и обнаружения и решать многие химические, аналитические и другие вопросы. По результатам различных и в том числе аналитических исследований были внесены существенные дополнения и коррективы в периодическую систему элементов, составленную Менделеевым. [c.14]

    Книга из серии монографий по аналитической химии, написанная крупным ученым из ФРГ, посвящена обнаружению малых количеств различных органических соединений в пищевых, фармацевтических, биологических объектах, а также в объектах окружающей среды. Рассмотрены методы разделения и концентрирования веществ и способы детектирования соединений с помощью новейших физико-химических методов. [c.4]

    В настоящее время одним из важнейших и стремительно развивающихся методов аналитической химии, опирающимся на успехи в области органического синтеза, является применение органических реагентов в неорганическом анализе. Этой проблеме посвящен ряд монографий отечественных и зарубежных авторов (большинство из последних имеется в русском переводе). Следует, однако, отметить, что во всех опубликованных ранее книгах внимание уделялось либо изложению главным образом теоретических основ применения органических реагентов в анализе, либо описанию преимущественно свойств самих органических реагентов и практическим рекомендациям по конкретному использованию их для обнаружения, разделения и определения тех или иных соединений. [c.5]

    Применение радиоактивности в аналитической химии весьма многообразно. Области практического использования отдельных аналитических методов, основанных на измерении радиоактивности, охарактеризованы в разделе 12.5. Там же описаны принципы некоторых наиболее важных аналитических методик, их погрешности и пределы обнаружения. Измерение радиоактивности широко применяют также в научно-исследовательских целях для исследования механизмов химических реакций, определения растворимости малорастворимых соединений, исследования процессов разделения и для решения многих других задач, включая определение важнейших физико-химических констант (констант устойчивости координационных соединений, констант ионообменных процессов и т.д.). [c.274]

    Органические реагенты в настоящее время чрезвычайно широко используют в аналитической химии. На применении их основано большинство современных методов обнаружения, определения и разделения элементов [1-10]. [c.217]

    Ионы бериллия обнаруживают очень большое сходство с ионами алюминия, давая много одинаковых реакций. Долгое время разделение бериллия и алюминия было очень трудной аналитической задачей. После того как в практику аналитической химии был введен комплексон III, который образует с алюминием устойчивый комплексонат, а с бериллием малоустойчивый комплексонат, методы разделения обоих элементов существенно упростились. Комплексон III применяется для маскировки ионов А1 +, а также ионов многих других элементов при обнаружении и количественном определении бериллия. [c.50]

    По определению академика И. П. Алимарина, аналитическая химия — наука, развиваюш,ая теоретические основы анализа химического состава веществ, разрабатывающая методы идентификации и обнаружения, определения и разделения химических элементов, их соединений, а также методы установления химического строения соединений. [c.7]

    Экстракция — это процесс переноса растворенного вещества из одной жидкой фазы в другую, не смешивающуюся с ней, из водного раствора в слой не смешивающегося с водой органического разбавителя. Экстракция представляет собой один нз методов фазового разделения веществ и широко применяется в аналитической химии. Причины популярности экстракционных методов в аналнзе заключаются в следующем. Одной из важных задач анализа является необходимость определения микроколичеств элементов. Нередко эти количества находятся ниже предела обнаружения реакций, используемых для определения. Поэтому перед заключительным определением проводят концентрирование. [c.565]

    Обсуждая некоторые общие аспекты кинетики в аналитической химии, мы рассматривали в основном кинетику химических реакций и прежде всего реакщш, положенных в основу обнаружения и определения веществ химическими методами. В то же время данные о кинетике других процессов (растворение, кристаллизация, парообразование и т. д.), часто используемых в методах разделения и определения, ничуть не менее важны, и кинетика этих и других процессов, положенных в основу методов экстракции, хроматографии, электрохимии и др., будет обсуждаться в соответствующих главах. [c.94]


    В этой книге мы не будем рассматривать ни большинство смешанных соединений указанных выше типов, ни аналитическую химию следовых количеств полимерных соединений, поскольку для этих целей применяются в высшей мере специфические методы разделения и обнаружения. К таким соединениям помимо промышленных синтетических полимеров относятся биополимеры, например ДНК, РНК, белки и т. д. Последние играют важнейшую роль в биохимии, но для их определения на уровне следовых количеств применяются специфические биохимические методы, и поэтому они также не рассматриваются в настоящей монографии. Аналогично только вкратце будут упомянуты предшественники биополимеров — аминокислоты, нук-леозиды и т. п. [c.15]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Успех препаративного разделения в немалой мере определяется выбором метода обнаружения. Естественно, применимы только те методики, которые не приводят к разложению вещества. Проще всего работать с окрашенными соединениями, как и с веществами, видимыми в УФ-свете без каких-либо вспомогательных операций. Согласно опыту авторов в области химии стероидов, зоны некоторых веществ, невидимые при аналитической хроматографии, можно различать визуально при хроматографии препаративной, где количество наносимых веществ во много раз больше. [c.136]

    Проблемы этого раздела аналитической химии — обоснование метода определения качественного состава анализируемой пробы (вещества или смеси веществ) по аналитическому сигналу. Качественный анализ может использоваться для идентификации в исследуемом объекте атомов (элементный анализ), молекул (молекулярный анализ), простых или сложных веществ (вещественный анализ), фаз гетерогенной системы (фазовый анализ). Задача качественного неорганического анализа обычно сводится к обнаружению катионов и анионов, присутствуюнщх в анализируемой пробе. Качественный анализ необходим для обоснования выбора метода количественного анализа того или иного материала или способа разделения смеси веществ. [c.104]

    Заканчивая обзор методов определения элементов периодической системы по группам, следует указать на описанный во многих работах новый прием в аналитической химии — метод бумажной хроматографии (гл. V, стр. 63), иримененный для обнаружения и разделения катионов. Готовую хроматограмму обрызгивают раствором оксихинолина [147—149] или заблаговременно им пропитывают буд1агу, на которой проводят хроматографирование [148, 150]. Флуоресценция образовавшихся комплексов выявляет местоположение пятен катионов, а это позволяет определить для них значение По численному значению определяют, какому из катионов принадлежит данное пятно даже и в том случае, когда флуоресцепция отдельных пятен сходна. В зависимости от количества флуоресцирующего компонента, нанесенного в анализируемой капле, пятна одного и того же вещества различаются по размеру и по интенсивиости флуоресценции. [c.181]

    По сравнению с первым во втором издании больше внимания уделено использованию в качественном анализе современных физических и физико-химических методов идентификации неизвестного вещества. Современные тенденции развития аналитической химии выразились в более широком использовании методов разделения, концентрирования и обнаружения микропримесей. Значительное место отведено качественному обнаружению микропримесей, ме- [c.3]

    Качественный анализ — традиционная первая часть курса аналитической химии. Со времени возникновения, которое датируется обычно работами Р. Бойля (1661 г.) и связано с первоначальным определением химического элемента как химически неразложимого простого вещества, и до середины XX века он и практически, и теоретически базировался на системе химических реакций — разделения, отделения, обнаружения. В последние десятилетия практический качественный анализ в основном проводят не химическими способами, а с помощью гораздо более быстрых и эффективных при большом количестве компонентов инструментальных физических методов (спектрографических н радиоактивационных). Соответственно и общую теорию этих методов излагают в курсах физики и физической химии, а также в более узких специальных курсах (например, спектрального анализа, радиохимии и т. д.). При этом не следует, однако, забывать, что все большее практическое значение приобретают химико-спектральные и химико-радиоакти-вационные методы, основанные на химическом разделении и последующем инструментальном определении. [c.5]

    Совершенно иное положение складывалось в аналитической химии, в особенности в аналитической биохимии. В этой области всегда существовала острая потребность в простых и тонких методах разделения и анализа сложных смесей веществ. Следует отметить, что попытки применения дисперсных материалов для аналитических целей также относятся к древним временам. Так, например, в литературе [9] имеется упоминание о том, что еще Плиний использовал папирус, пропитанный экстрактом галловых орехов, для обнаружения сульфата железа. В середине XIX в. появляются исследования, посвященные применению бумаги для аналитических целей. Из наиболее ранних работ можно уномя-нуть работы А. Кона [176], обнаружившего образование цветных колец при испарении на бумаге капли раствора растительных пигментов, а также работы Ф. Рунге [166, 216], изучавшего периодические процессы при растекании раствора солей и щелочей по бумаге, предварительно пропитанной различными осадителя-ми. Определенное историческое значение в развитии этих начальных работ сыграли исследования Ф. Шёнбайна [217], и в особенности Ф. Гёппельшрёдера [198], являющегося создателем так называемого капиллярного анализа. [c.12]

    Структуру аналитической химйи можно оценить, опираясь на ее методы. В соответствии с целью и назначением все методы аналитической химии можно разделить на методы пробоотбора, разложения проб, разделения компонентов, обнаружения (идентификации) и определения. Наибольщее значение имеют методы определения (в данной работе мы не будем проводить различие между методами обнаружения и определения). [c.16]

    Благодаря возможности объединения процесса высокоселективного разделения с последующим высокочувствительным детектированием, хроматография стала самым распространенным методом анализа сложных смесей, позволяющим определять до 1000 веществ в одной пробе с пределом обнаружения на нанограммовом и фемтограммовом уровнях. В современной аналитической химии 75-80 % всех выполняемых анализов связаны с использованием хроматографических методов. Возникающие новые хроматографические варианты взаимообогащают друг друга и стимулируют их дальнейшее развитие. Ниже дадим определения лишь основных сложившихся к настоящему времени хроматографических методов. [c.16]


Смотреть страницы где упоминается термин Методы обнаружения и разделения в аналитической химии: [c.3]    [c.199]    [c.253]    [c.425]    [c.3]    [c.150]   
Смотреть главы в:

Аналитическая химия. Кн.1 -> Методы обнаружения и разделения в аналитической химии




ПОИСК





Смотрите так же термины и статьи:

Аналитическая химия

Аналитическая химия методы

Метод аналитические

Методы разделения

Обнаружение в аналитической

Обнаружение в аналитической методы

Разделение в аналитической химии

Химия методы



© 2025 chem21.info Реклама на сайте