Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика реакции в других условиях

    Эксперименты подтвердили принятую модель процесса горения крупных частиц сланца. Изменение температуры центра и выхода летучих из частицы диаметром 12 мм во времени при температуре печи 910 и 1010° К в потоке азота, которое характерно для частиц, представлено на рис. 1, с другим диаметром. Графики показывают, что выход летучих веществ заканчивается раньше завершения прогрева частицы до температуры печи. Это свидетельствует о том, что скорость процесса лимитируется интенсивностью поступления тепла к фронту разложения керогена. В другом случае, если скорость процесса определялась бы кинетикой реакции разложения керогена, время прогрева частицы до температуры печи оказалось бы меньше времени выхода летучих. В сложном теплообмене между греющей средой и частицей в условиях опытов преобладающее значение имеет лучистый тепло-перенос. Вследствие этого время выхода летучих находится в зависимости от температуры среды. Увеличение диаметра частицы и исходного количества органического вещества в сланце приводит к увеличению времени процесса, поскольку возрастает термическое сопротивление доставке тепла к фронту разложения и затраты тепла на разложение керогена во фронте. Эмпирическая обработка зависимости времени выхода летучих веществ от указанных факторов представлена на рис. 2 и описывается следующей формулой  [c.89]


    Экспериментальными данными, полученными при 470 °С и давлении 1 МПа, подтверждено, что скорость дегидрирования циклогексана на алюмоплатиновом катализаторе является линейной функцией молярной доли циклогексана в смеси с бензолом и что она не зависит от молярного отношения водород циклогексан (рис, 1,3). Из уравнения (1.5) также следует, что скорость дегидрирования циклогексана не зависит от его парциального давления, что согласуется с наблюдениями, сделанными при изучении кинетики этой реакции на платиновых катализаторах в других условиях [12, 13, 4]. [c.11]

    Для расчета показателей процесса по любой двухфазной модели необходимо на основе литературных данных или исследований в лабораторном реакторе задаться кинетическими уравнениями основной и побочных реакций. Если в процессе работы катализатор теряет активность, то кинетика дезактивации и регенерации также должна быть известна. Теплоты реакций и равновесный состав реакционной смеси рассчитывают из термодинамических данных. Предварительные эксперименты в лабораторном изотермическом реакторе с неподвижным слоем необходимы для получения зависимостей констант скоростей процессов от размера зерен и пор катализатора, температуры, давления, состава реакционной среды и других условий. [c.282]

    Теоретически существует другая возможность (кроме той, что указана в пунктах 3—5) использования экспериментальных результатов если ход Исследуемого явления удается описать в виде системы уравнений, то, решая ее для новых условий, можно определить ход явлений в этих условиях. В случае физико-химических процессов система уравнений, описывающих явление (например, кинетику реакции, тепло- и массообмен и т. д.), — это обычно система дифференциальных уравнений, которые не удается решить аналитически. Отсюда следует, что метод подобия имеет важное значение, хотя все чаще удается решать сложные системы уравнений благодаря использованию ЭВМ. [c.23]

    Додд и Ватсон [13] опубликовали результаты изучения кинетики реакции дегидрирования бутана, которые дают повод к довольно оптимистическим предсказаниям относительно избирательности процесса при глубокой конверсии. Их результаты сопоставляются в табл. 10 с экспериментальными данными других исследователей [76]. Разница между экспериментальными данными, по-видимому, связана только с различием в рабочих условиях. [c.198]


    Более полно изучена кинетика синтеза метаиола на цинк-хромовом катализаторе. При выводе кинетических уравнений принимались разные лимитирующие стадии хемосорбция исходных компонентов, десорбция метанола, гидрирование поверхностных соединений. В результате получались кинетические уравнения, описывающие экспериментальные данные в конкретных условиях принятой методики, но не описывающие данных, полученных в других условиях, а в отдельных случаях константы скорости реакции, например, рассчитанные по уравнениям 2.20, [c.64]

    Очевидно, что и сам объем фаз и их соотношение в условиях проведения реакции отличаются от таковых, рассчитанных по подачам или загрузкам реагентов. Поэтому надо уметь их определять. Проще всего это было бы осуществлять визуально, однако так удается делать достаточно редко, при работе без давлений, да и то в основном на системе жидкость — жидкость. Приходится искать другие пути. Одним из них является постановка специальных исследований по определению изменения объема фаз в ходе реакции в условиях равновесия, но при отсутствии взаимодействия. Однако такие исследования даже более сложны, чем изучение кинетики. Кроме того, исключить взаимодействие, сохранив полностью условия равновесия, можно только в гетерогенно-каталитических реакциях при постановке опытов без катализатора. Вследствие этого приходится либо расчетным путем определять объем фаз, исходя из молекулярных объемов их компонентов (часто тоже расчетных) и из постулата аддитивности этих объемов в растворе, либо ориентировочно оценивать при помощи метки. Последний прием заключается в том,что в одну из фаз дается инертная метка, не влияющая на ход реакции, например бензол, полихлорид бензола и т. н., в зависимости от реакции. Определяя содержание метки в каждой пробе и зная общее количество метки, можно рассчитать объем фазы. Можно давать метку и в газовую фазу в виде гелия или аргона. Однако при давлениях — 100 кгс/см и выше растворимость этих газов довольно заметна даже для повышенных температур, что вносит ошибку в расчеты. Все же газовая метка удобнее, поскольку в ряде случаев отбор газовой пробы удается осуществить из работающего аппарата установкой в нем специальных отбойников. [c.72]

    Закон действия масс — соотношение, лежащее в основе химической кинетики. Одиако он строго выполняется только в пределах применимости к реагирующим веществам законов идеальных газов. Ои также применим и к реакциям в сильно разбавленных растворах. Для других условий зависимости скорости химических реакций от концентрации приобретают более сложную форму. [c.91]

    До настоящего времени все сведения о скоростях химических процессов и их энергиях активации получаются путем экспериментального изучения кинетики этих процессов. Расчетные методы химической кинетики позволяют рассчитать скорость химического процесса в каких либо условиях (например, при определенной температуре и концентрации реагентов) только в случае, если известна скорость той же реакции в других условиях. В отдельных случаях удается дать соотношение, позволяющее, зная скорость одной химической реакции, рассчитать скорость какой-либо сходной химической реакции. Фактически это означает, что химическая кинетика может рассчитывать лишь отношение скоростей реакций в различных условиях или отношение скоростей каких-либо родственных реакций, т. е. относительные значения скорости. [c.65]

    Прямое использование методов ИК-спектроскопии в исследованиях по химической кинетике возможно при условии, что реакция является достаточно медленной и время отклика спектрофотометра не ограничивает точность измерений. Существует несколько методов изучения зависимости концентрации от времени. Простейший из них состоит в том, что реакция в небольшой аликвотной пробе реакционной смеси останавливается или разбавлением, или введением дезактивирующего катализатора, или понижением температуры, а образцы сканируются в подходящих условиях. В другом методе проводится реакция непосредственно в кювете ИК-спектрофотометра при многократной записи спектра (или его части). Если интерес представляет только одна составная часть реакционной смеси, то спектрофотометр устанавливается на фиксированную частоту полосы поглощения и оптическая плотность наблюдается как функция времени примером такого рода является исследование термического разложения оксида этилена [99]. Во многих случаях, когда нельзя использовать растворитель, удовлетворительные результаты можно получить, работая с толстыми образцами в области обертонов. Конечно, при этом должна тщательно контролироваться температура образца. [c.283]

    Скорости реакций зависят от многих факторов природы реагирующих веществ, концентрации, температуры, давления, присутствия катализаторов, а в случае фазовых превращений — также от ряда других условий (состояние поверхности раздела фаз, условий тепло-и массообмена и др.). Задача кинетики состоит в выяснении роли атих факторов и в установлении механизма реакций и фазовых превращений. [c.228]


    Таким образом, наличие свободного окислителя в области между стенкой и зоной максимальных температур, а также присутствие в составе продуктов горения окиси углерода свидетельствуют о том, что по крайней мере в определенных условиях при диффузионном горении в пограничном слое (да и вообще в турбулентном потоке) существенной может оказаться роль химической кинетики скорость химической реакции оказывается соизмеримой или даже может быть меньше скорости перемешивания до молекулярного состояния горючего с окислителем. Не исключено, что в других условиях — при горении более реакционноспособных [c.37]

    Гетерогенными факторами указанного типа обусловлены также следующие закономерности цепного горения изотермическое многократное самовоспламенение в замкнутом объеме, новые критические явления внутри области воспламенения в изотермическом режиме, изотермическое гетерогенное распространение пламени, гистерезис кинетики цепного процесса, индукция одной цепной реакцией другой реакции из-за участия адсорбированных носителей цепей, гетерогенное разветвление цепей, приводящее к локализации изотермического пламени у поверхности даже в условиях, когда обрыв цепей происходит в основном на поверхности, выход атомов кристаллической решетки в газовую фазу под воздействием носителей цепей и т. д. Обнаруженные закономерности присущи всему классу разветвленных процессов, т. е. имеют общий характер. Очевидно, что указанные факторы действуют и в неизотермических условиях. [c.429]

    Другая важная особенность, которую выявляет уравнение (28), — это независимость кинетики реакции от стандартного потенциала промежуточного соединения в тех случаях, когда этот потенциал лишь незначительно превышает сумму стандартных потенциалов реагентов. И наоборот, при таких условиях из кинетических исследований нельзя сделать никаких выводов о стандартном потенциале, энтропии или энтальпии промежуточного соедииения. [c.146]

    До сих пор мы вели изложение применительно к прямой задачи теории горения считая кинетику реакции заданной — рассчитать условия воспламенения, скорость распространения пламени и другие характеристики горения. Развитие численных методов математического анализа делает в настоящее время эту задачу разрешимой в любой конкретной ее постановке. На быстродействующей вычислительной машине можно получить численный ответ для сколь угодно сложной кинетики. Нередко в литературе приходится встречать утверждения, будто развитие машинной математики позволяет обходиться без приближенных методов. Однако в применении к теории горения подобные воззрения — плод чистого недоразумения. [c.316]

    Первый случай возможен только в открытых системах, куда исходное вещество доставляется потоком. Предел нарастанию амплитуды кладется здесь тривиальным обстоятельством конеч-ной концентрацией исходного вещества. Период колебаний столь же тривиальным образом связан со временем накопления исходного вещества в реакционном сосуде, т. е. обратно пропорционален скорости потока. Колебания такого характера мы называем тривиально-релаксационными . Они возможны во всякой открытой системе при наличии критических условий. Так, если существует нижний предел воспламенения по концентрации, то напуск смеси в реакционный сосуд приведет к вспышке по достижении критической концентрации. Если после этого реакция завершается достаточно быстро, то дальнейшее поступление исходных веществ в сосуд может повести к серии последовательных вспышек. Подобные явления многократно наблюдались на опыте (ссылки см. в [5]) при окислении паров фосфора и других аналогичных процессах. Они совершенно подобны колебаниям опрокидывающегося сосуда. Важно заметить, что все характеристики колебательного процесса не зависят здесь от кинетики реакций. Амплитуда автоколебаний отвечает просто переходу от критической концентрации к полному выгоранию, а частота пропорциональна скорости подачи и определяется временем накопления критической концентрации в сосуде. Процесс может быть полностью описан, если ввести чисто феноменологически критическое условие. Никакой дополнительной информации о кинетике и механизме химических процессов тривиально-релаксационные колебания дать не могут. [c.438]

    Если заменить обратное время пребывания Ь на коэффициент массоотдачи р, то полученное выражение совпадает с критерием (IX, 47), который мы получили в предыдущей главе квазистационарным методом для теплового режима поверхности. Как мы видели, задачи о реакции на поверхности и о гомогенной реакционной зоне математически тождественны и отличаются только заменой Р на 6. Таким образом, полученный результат означает, что для реакции первого порядка неустойчивость типа седла имеет чисто квазистационарный характер. Этот вывод остается справедливым и для любой другой кинетики реакции, как легко убедиться посредством сопоставления условий (X, 29) и (IX, 53), которые отличаются, как и исходные уравнения, только заменой а на А и Р на 6. [c.455]

    Многочисленные исследования механизма и кинетики этой реакции в широком диапазоне температур и давлений показали существенную зависимость кинетических закономерностей этой реакции от условий ее протекания. В опытах ряда исследователей был обнаружен первый порядок реакции, в опытах других исследователей порядок реакций в зависимости от ус.ловий ее протекания менялся от нулевого до первого. [c.164]

    ЯВЛЯЮТСЯ быстрыми процессами, так что скорость определяется скоростью изомеризации на кислотных центрах или, возможно, скоростью миграции в механически смешанных катализаторах, если размер частиц велик. В общем Вейсс и Претер [204] получили доказательства того, что изомеризация является медленной стадией, исследуя в стандартных условиях на специально подобранных катализаторах соотношения между скоростями реформирования нефти и а) дегидрирования циклогексана, на которое действует только металл, и б) изомеризации кумола, которая подвергается действию только кислотных центров. Скорость реформирования на катализаторах со сравнительно низкой дегидрирующей активностью оказалась независимой от скорости дегидрирования, но она изменялась параллельно скорости изомеризации кумола на катализаторах с широким диапазоном активности. В другом исследовании [205] по изомеризации н-пентана на платине, нанесенной на окись алюминия, показано, что кинетика реакции соответствует следующему механизму  [c.342]

    Окисление до любого из возможных промежуточных соединений является сильно экзотермической реакцией, поэтому не вполне ясно, почему окисление должно остановиться на какой-либо определенной стадии или почему полное окисление до двуокиси углерода и воды не протекает в качестве единственной реакции, как при несколько более высоких температурах. Баргойн и другие [1] изучали медленное некаталитическое окисление о-ксилола воздухом при несколько менее высоких температурах и при давлении 4,6 апг. Из их данных видно (табл. 2), что избирательность реакции чрезвычайно мала. Не опубликовано ни одного исследования по механизму или кинетике реакции окисления о-ксилола в условиях, применяемых для производства фталевого ангидрида. Такое исследование представляло бы очень большие трудности вследствие гетерогенности реакции, чрезвычайно малого времени реакции и высокой температуры. Однако, изучая основные и побочные продукты этой и подобных ей реакций, можно получить некоторое представление о ходе реакции. [c.11]

    Физические факторы при алкилировании изобутана определяют условия проведения всего процесса, состав и качество алкилата [3]. Транопортирование изобутана к месту реакции (про тека-ющей на поверхности раздела двух фаз или вблизи нее) является основным фактором. Оно зависит от нескольких параметров. Конечно, важнейшим является интенсивность перемешивания, поскольку оно влияет не только на подвод изобутана, но и на величину поверхности раздела фаз. К числу других важных параметров относятся соотношение изобутан олефин в сырье, время пребывания в реакторе, концентрация химически инертных соединений в углеводородной фазе, объемное соотношение кислотной и углеводородной фаз. Важно также, какая из фаз эмульсии является непрерывной. От температуры, состава кислоты и олефина, используемого для алкилирования, также зависят транспортирование изобутана и кинетика реакции [4]. [c.130]

    Так, в работе [315] для нахождения динамических характеристик реакции И + СН4 -СН4+Н" использовался потенциал аЬ initio в малой области переходного состояния и вычислялась классическая траектория движения с малой поступательной энергией вдоль координаты реакции. Выбор начальных условий в области переходного состояния и движение вдоль координаты реакции приводят к быстрому распаду, а движение происходит в ограниченной области конфигурационного пространства. Такой подход, к сожалению, не позволяет анализировать динамику реакции во всем конфигурационном пространстве. Другой подход к описанию ППЭ предложен в работах [270, 337]. По некоторым опорным точкам, в которых потенциальная энергия вычисляется из точного решения волнового уравнения, и по асимптотическому поведению потенциала строится приближенный сплайн [176]. Такая аппроксимация дает возможность гибко варьировать ППЭ, сохраняя ее значения в опорных точках, и, следовательно, получать детальную информацию о влиянии ППЭ на динамику и кинетику реакции. [c.52]

    Основная трудность опытного изучения кинетики реакций (5.2) и (5.3) состоит не в измерении скоростей образования молекул продуктов, а в определении концентраций радикалов. В газовых реакциях концентрации свободных радикалов редко превышают 10 -ь Ч- 10 мoль л , что значительно ниже пределов чувствительности, которые характерны для обычных аналитических методов. При экспериментальном изучении радикальных реакций можно создать такие условия, при которых проблема определения концентраций радикалов частично упрощается [117, 118]. Свободные радикалы образуются при фотолизе или пиролизе подходящих соединений, при ртутной фотосенсибилизации насыщенных молекул или при присоединении атома водорода к молекуле олефина. Источниками радикалов могут быть металлалкилы, кетоны, альдегиды и другие соединения. [c.74]

    Первым и наиболее важным из них является молекулярнаядиффузия. При равновесном потенциале электрода концентрация растворенных веществ во всех точках раствора за пределами двойного электрического слоя одинакова. При пропускании тока вблизи электрода это условие нарушается, так как одни вещества вступают в электродную реакцию, другие образуются в результате реакции. Возникает разница в концентрациях (или точнее в активностях) растворенных веществ вблизи электрода и в объеме раствора, что приводит к диффузии разряжающегося вещества из объема раствора к электроду, а продуктов реакции — от электрода в объем раствора. Так как концентрационные изменения всегда сопутствуют электрохимическому процессу, то молекулярная диффузия происходит во всех электродных реакциях, тогда как другие способы массопереноса могут накладываться на процесс молекулярной диффузии или отсутствовать вовсе. Именно поэтому рассматриваемый раздел называют диффузионной кинетикой. [c.157]

    По своей реакционной способности перекись водорода в щелочном растворе отличается от других реагентов в реакции Байера — Виллигера. Для проведения реакции Дэкина и для расщепления а-дикетопов следует предпочесть щелочную среду. Однако при работе с а, -непредельными кетонами применение этих условий приводит исключительно к образованию эпокси-кетонов, а не иродуктов реакции Байера — Виллигера. Было проведено исследование кинетики реакции окисления окиси мезитила и этнлиденацетопа перекисью водорода в щелочной среде [107а]. Было бы желательно получить дальнейшие сведения о течении и кинетике реакций, проводимых с применением перекиси водорода в щелочной среде. [c.97]

    Наряду с другими исследователями окислением тетралина занимались Робертсон и Уотерса также Вудворт и Миро-биан . Последние изучали кинетику окисления в условиях инициирования, включая получение радикалов из органических соединений как термически, так и с помощью металлов (например, ацетата кобальта). Робертсон и Уотерс предложили возможную интерпретацию кинетики этой реакции и установили состав полученных продуктов. [c.118]

    Существует мнение, что развитие полярографии предшествовало появлению кулонометрии, поскольку данные полярографии очень часто используются при выборе оптимальных условий для кулонометрии на ртутных катодах. Однако, в действительности, Санд и другие еще в начале нашего столетия определили многие принципы и технические основы кулонометрического метода. Но в связи с недостатком специального оборудования этому электролитическому методу уделяли относительно мало внимания вплоть до 1942 г., когда Хиклинг опубликовал описание своего устройства для автоматического контроля потенциала, которое он назвал потенциостатом. С этих пор, главным образом благодаря усилиям Лингейна, Фурмана, Мак-Невина, Мейтеса и многих других метод потенциостатической кулонометрии находит все более широкое применение при решении проблем кинетики реакций, анализ-а и синтеза. [c.7]

    Напомним вкратце историю вопроса. На протяжении XIX в. и первой трети XX в. химия, и химическая кинетика в частности, развивалась почти обособленно от других технических дисциплин. Исследовались строение химических соединений и законы протекания химических реакций в строго определенных, контролируемых условиях температуры, состава, давления. Этот этап развития химии был необходим и плодотворен. Именно на этом этапе выросли периодическая система, термохимия и химическая термодинамика. Однако по мере развития химической технологии, увеличения масштаба производства, осознания жергетики как частного случая реакции топлива с кислородом на передний план выдвинулись новые вопросы. Поддержание определенных условий оказалось не только трудной, но иногда и ненужной задачей. Возникла проблема изучения химической реакции в условиях, зависящих решающим образом от выделения тепла при реакции, от связанного с реакцией изменения давления и т.п. [c.502]

    Подставляя величину к в уравнение (5. 77) и интегрируя его совместно с уравнением переноса энергии (5.63), можно получить при-блин енпое аналитическое выражение закономерности выгорания пылевидного топлива по длине зоны горения прп неизотермических условиях, как это показано в наших работах [520, 522]. Также как и прп пзотермпческпх условиях [см. формулы (1.36) и (1.40)], общее решение должно складываться из двух членов, один из которых определяется кинетикой реакции, а другой диффузией. Решение этой задачи с использованием функции к = затруднительно для непосред- [c.525]

    Обоснованы новые взгляды на кинетику реакции алкилирования и составлены кинетические уравнения для процессов, проходящих в статической, полупроточной и проточной системах, в гомогенных и гетерогенных условиях. Представлены экспериментальные зависимости влияния температуры, давления, времени контакта, мольного соотношения реагентов, ультрафиолетового и у-излучений и других факторов на выход продуктов алкилирования. Обсуждены вопросы промотирования катализаторов. Монография может быть использована в практической и научной деятельности инженерами и научными работниками предприятий химической, нефтехимической и нефтеперерабатывающей промышленности, научными работниками академических институтов, отраслевых НИИ и КБ, может служить также учебным пособием для преподавателей, аспирантов и студентов вузов химико-технологических специальностей. [c.2]

    Понятие о химической кинетике. Скорость химических реакций. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым Этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных условиях протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значительными. Именно поэтому термодинамическая возможность осуществления данной реакции (АС < 0) является необходимым, но недостаточным условием реализации процесса в действительности. Химическая кинетика кроме выяснения особенностей развития процесса во времени (формальнокинетическое описание) изучает также механизм взаимодействия реагентов на атомно- лолекулярном уровне (молекулярно-кинетическое описание). Оба метода описания кинетических закономерностей взаимно дополняют друг друга. [c.129]


Смотреть страницы где упоминается термин Кинетика реакции в других условиях: [c.336]    [c.132]    [c.48]    [c.317]    [c.148]    [c.148]    [c.203]    [c.148]    [c.129]    [c.17]    [c.248]    [c.213]    [c.248]    [c.487]    [c.159]    [c.27]    [c.78]   
Смотреть главы в:

Физическая химия быстрых реакций -> Кинетика реакции в других условиях




ПОИСК





Смотрите так же термины и статьи:

Реакции условий



© 2025 chem21.info Реклама на сайте