Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение каучуков

    ОПТИМИЗАЦИЯ МОЛЕКУЛЯРНОГО СТРОЕНИЯ КАУЧУКОВ [c.92]

    Из приведенных в этой главе данных видно, что к строению каучуков, обеспечивающих хорошие технологические характеристики смесей, и, позволяющих одновременно получать резины с наилучшими прочностными, эластическими, гистерезисными и другими механическими показателями, предъявляются различные, часто противоположные требования. [c.92]


    Один из традиционных подходов к разрешению этого противоречия и реализации преимуществ идеального молекулярного строения каучуков (линейное строение, высокая молекулярная масса, узкое ММР) заключается в получении каучуков, технологические свойства которых улучшают путем введения значительных количеств пластификаторов (нафтеновые и ароматические масла). [c.93]

    Очень длинные молекулы каучука беспорядочно свернуты и непрерывно меняют форму. Эта особенность строения каучука и обусловливает его эластичность (Мейер) если удалить силы, растягивающие каучук, а тем самым и отдельные его молекулы, то молекулярные цепи снова сжимаются и сворачиваются в клубки, поскольку такая форма молекул статистически более вероятна. При низкой температуре (—60 ) каучук теряет эластичность и превращается в твердую хрупкую массу. Это изменение состояния вызывается прекращением беспорядочного движения, лежащего в основе эластичности, так как при низких температурах кинетическая энергия слишком мала для того, чтобы преодолеть силу притяжения между соседними цепями. [c.951]

    Натуральным каучуком располагают очень немногие страны, что, безусловно, не может обеспечить все возрастающую потребность в этом ценном веществе во всем мире. Поэтому вполне естественно, что после установления строения каучука широкое развитие получили исследования по созданию синтетического каучука. [c.302]

    Основу современных представлений о строении каучука заложил К. Гарриес в работах, выполненных в 1905—1912 гг. Он воспользовался методом озонирования, который с тех пор был взят на вооружение химиками при исследовании непредельных соединений. Если на этиленовый углеводород подействовать озоном, то через стадию неустойчивого озонида можно добиться разрыва двойной связи, причем по месту разрыва присоединяются атомы кислорода. Рассмотрим эту реакцию сначала на примере 2-метилбутена-2  [c.320]

    Способность изопрена полимеризоваться под действием ультрафиолетовых лучей и некоторых химических реагентов была известна еще к концу прошлого столетия. Естественно, что не было недостатка в попытках воспроизвести путем такой полимеризации натуральный каучук. Однако свыше 50 лет эти попытки не приводили к успеху. Причина выяснилась лишь в последние десятилетия, после установления всех деталей строения каучука. [c.321]

    Химический состав и строение, а следовательно, и физико-химические свойства синтетических каучуков могут быть весьма разнообразны и сильно отличаться от свойств натурального каучука. В этом заключается значительное преимущество синтетических каучуков, так как, изменяя состав н строение каучуков, нм можно придать такие свойства, которыми не обладает натуральный каучук. Так, например, в настоящее время производятся бензо- 11 маслостойкие, морозостойкие, газонепроницаемые и другие синтетические каучуки. [c.424]


    Глава 3 СТРОЕНИЕ КАУЧУКОВ [c.47]

    Газопроницаемость каучука связана с растворением газа в каучуке и с диффузией его через каучук. Газопроницаемость зависит от молекулярного строения каучука и от природы газа. Удельной газопроницаемостью называется объем газа в см , проходящий в секунду через поверхность, равную 1 см при толщине слоя каучука 1 см и при разности давлений, равной 1 мм рт. ст. [c.89]

    В основе современной теории эластичности каучука лежат представления о молекулярно-кинетическом строении каучука. Теория эластичности раскрывает механизм эластических деформаций, устанавливает причины релаксационного характера этих деформаций. Сущность современных представлений о молекулярно-кинетическом строении каучука заключается в том, что молекула каучука состоит из молекулярных звеньев, обладающих способностью изменять свое взаимное расположение благодаря непрерывному вращательному и колебательному движению вокруг простых связей. Вследствие непрерывного хаотического теплового движения молекулярных звеньев молекулы каучука находятся не в растянутом, а в свернутом состоянии, как это изображено на рис. 15 (стр. 82), форма молекул при этом все время меняется. [c.101]

    Круг агентов вулканизации довольно широк, а выбор их определяется хим. строением каучука, условиями эксплуатации изделий и приемлемым технол. способом проведения В. Для диеновых каучуков (гомо- и сополимеров изопрена или бутадиена) наиб, широко применяют т. наз. серную вулканизацию. Ее используют в произ-ве автомобильных покрышек и камер, мн. видов резиновой обуви, РТИ и др. Мировое потребление серы для В. превышает 100 тыс. т/год (среднее ее содержание в резиновой смеси составляет 1,5% по массе). [c.435]

    Задача 8.16. Какие продукты образуются при озонолизе полибутадиена (С Н я, если полимеризация происходит а) как 1,2-присоединение и б) как 1,4-присоединение Задача 8.17. Озонолиз натурального каучука приводит в основном (90%) к соединению 0=СН— Hj— Hj— ( Hj)=0. Что вы можете сказать о строении каучука  [c.261]

    В 1826 г. М. Фарадей на основании элементного анализа установил, что НК является продуктом на основе вещества, которое соответствует формуле СзНе. Это он ввел в научный обиход термин изопрен —так назвал он натуральный каучук. Позднее, когда было установлено полимерное строение каучука, это имя перешло к мономеру — углеводороду 2-метил-1,3-бутадиену СН2= С(СНз)—СН=СН2 и стало его тривиальным названием. [c.6]

    Регулярность строения каучука имеет решающее влияние на его способность ориентироваться и кристаллизоваться. При растяжении гибкие участки макромолекул каучука начинают выпрямляться и ориентироваться в направлении действия деформирующей силы. При этом некоторые каучуки способны к фазовому переходу из аморфного в кристаллическое состояние (НК, СКИ-3, СКД, Б К, хлоропреновый каучук). Резины на их основе обладают повышенной прочностью (см. Приложение IX). Резины на основе ориентированных некристаллизующихся каучуков ведут себя при растяжении подобно резинам на основе кристаллизующихся каучуков. По мере распрямления участков макромолекул проявляется их высокая степень ориентации, при этом, как следствие, возрастает жесткость, а следовательно, прочность резин (рис. 8.2). [c.113]

    Двухфазная структура каучуковой системы со сферическими включениями твердых частиц смолы близка по своему строению каучукам, наполненным неорганическими наполнителями, и имеет много общего с ними по механизму усиления. [c.73]

    Свойства эластомеров определяются химическим строением каучука и составом резиновых смесей. В табл. IV. 1 сопоставлены важнейшие свойства каучуков различного строения. [c.144]

Таблица IV.I. Строение каучуков и характеристика свойств Таблица IV.I. <a href="/info/7467">Строение каучуков</a> и характеристика свойств
    Свойства латексных пленок, в том числе и химическая стойкость зависят от природы и строения каучука, от вида вводи мого наполнителя и других ингредиентов [173, 174]. [c.244]

    Новый бутадиеновый каучук СКД (синтетический каучук дивиниловый) одинаков по химическому составу с каучуком СКБ, Различие между ними заключается в большей регулярности строения каучука СКД. Звенья его молекулярной цепи расположены в строго линейном порядке  [c.485]

    В литературе имеется несколько работ, посвященных электронно-микроскопическому изучению строения каучуков [2—6]. При этом обычно наблюдается картина либо бесструктурной пленки, либо капель разного размера. При разрыве пленок образуются длинные тонкие нити с эллиптическими или шарообразными утолщениями или сетки с такими же утолщениями. [c.137]


    Хотя в это время были сделаны попытки установить строение каучука путем пиролиза и изучения полученных пизкомолекулярных продуктов, однако еще не было даже представлений о полимерии. [c.5]

    Б. А. Дога дни н. Строение каучука, Усп. химии 5, 499—519 (1936). [c.213]

    Набор пласто-Эластических показателей позйоляет прибли женно судить о молекулярном строении каучуков и, соответственно, о комплексе технологических свойств резиновых смесей. Вместе с этим, отдельные показатели, основанные на измерении эффективной вязкости сырых каучуков, скорее характеризуют их качество с точки зрения стандартности, нежели технологические свойства смесей. [c.83]

    Аналогичные закономерности сохраняются и для наполненных резин. Влияние молекулярного строения каучуков на свойства вулканизованной сажекаучуковой системы выражается в существовании корреляции между различными физико-механическими по казателями и числом эластически эффективных узлов сетки, соот ветствующих ненаполненных вулканизатов [48]. [c.89]

    Строение и синтез каучука. По своей химической природе каучук является высокомолекулярным непредельным углеводородом и представлет собой смесь сложных полимерных молекул. Как непредельное соединение, каучук присоединяет бром и гало-идоводороды, причем на одну группу СзНд присоединяются два атома брома или одна молекула галоидоводорода. Следовательно, на каждую группу СдИ в молекуле каучука приходится одна двойная связь. При сухой перегонке каучука образуется, наряду с другими углеводородами, изопрен СаНд. Первые сведения о строении каучука были получены в 1905 г., когда Гарриес, обработав каучук озоном, получил стекловидный озонид состава СюН бОб. При разложении озонида водой образуется до 90% левулинового альдегида СНз—СО—СНз—СНг—СНО. [c.100]

    На образование пористой структуры в резине большое влинние оказывает свойство каучука растворять выделяющиеся при разложении порообразователя газы и способствовать миграции их из резиновой смеси. Газопроницаемость резиновой смеси зависит в основном от типа и строения каучука, а также от структуры вулканизата. Г1ористая структура образуется тем легче, чем больше сорбционная способность полимера и меньше проницаемость его лля газов. Поатому, например, для получения пористых резин с большим числом замкнутых пор рекомендуется применять каучуки с малой газопроницаемостью бутил- и хлорбутилкаучук, хлоро-np HOBf.in, бутадисннитрильный. [c.298]

    Элементарные р-ции, протекающие при В., определяются хим. строением каучука и агента В., а также условиями процесса. Обычно, независимо от характера этих р-ций, различают 4 стадии В. На первой, охватывающей в основном индукц, период, агент В. переходит в активную форму в результате его р-ции с ускорителями и активаторами процесса образуется т. наз. действительный агент В. (ДАВ), [Применеиие сравнительно стабильных компонентов вулканизующей системы обусловлено необходимостью относительно длительного (до одного года) их хранения на резиновых заводах, а также сохранения в течение нек-рого времени пластичности резиновой смеси, поскольку в противном случае исключается возможность формования изделия,] [c.435]

    Сборник содержит обзоры литературы по актуальным проблемам синтеза некоторых новых полимеров, в том числе и синтеза методом радиационной твердофазной полимеризации, по изучению строения каучуков методом озонолиза, по химической и радиационно-химической модификации поли меров. Специальная обзорная статья посвящена полимерным материалад с антиобледенительными свойствами. [c.376]

    Особенно большой уепсх выпал на долю озонового способа при выяснении строения каучука и гуттаперчи. Г арриесу is удалось превратить каучук при помощи озона в диозонид, давший при расщеплении левулиновый альдегид или, соответственно, левулиновую кислоту. [c.101]

    В случае анализа близких по строению каучуков (СКС—СКМС, изопреновый—хлоропреновый и имеющие подобные ИК-спектры) идентификацию целесообразно проводить по интенсивностям. Для этого вводится величина относительной оптической плотности. В качестве внутреннего стандарта взята полоса деформационных колебаний бСН в СНг (1460 см ). В табл. 2 Приложения приведены относительные оптические плотности для пиролизатов резины на основе различных типов каучуков. На рис. 1—39 Приложения приведены спектры каучуков и пиролизатов каучуков и резин на их основе. [c.16]

    Кинетика вулканизации смолонаполненных каучуков типа БС-45АК аналогична кинетике процесса вулканизации каучуков общего назначения С повышением температуры вулканизации до 200° С растет прочность, снижается плато вулканизации, при этом относительное и остаточное удлинения существенно не изменяются, что свидетельствует о, специфике вулканизации высокостирольных композиций При повышений температуры высокостирольный полимер деструктируется. Такая деструкция может осуществляться за счет термоокислительной деструкции бутадиеновых звеньев, а также при деполимеризации высокостирольных частей макромолекулы Количество и тип поперечных связей, так же как молекулярное строение каучука, характеризуют статическую и динамическую прочность вулканизата. В настоящее время следует, считать установленным, что в зависимости от степени поперечного сшивания статическая прочность вулканизатов изменяется по кривой с максимумом. У натурального каучука этот максимум соответствует концентрации поперечных связей 2,0 — 6,0 10 слг гУ полиизопре-нового — 3,0 — 5,0 10 см , бутадиен-стирольного — 1 — — 3,0 10 см- , карбоксилатного — 2,0 — 4,0 10 сжЧ Исходя из представлений, что разрушение вулканизата состоит из элементарных актов разрыва цепей была развита теория, объясняющая экстремальный характер этой зависимости. [c.44]

    Исследования по установлению строения каучука и созданию методов получения синтетического каучука длились более чем 100 лет. В 1826 г. М. Фарадей установил, что каучук состоит только из углерода и водорода, а Г. Вильямс в 1860 г. прн сухой перегонке каучука получил изоирен. Строение каучука окончательно установил немецкий химик Г. Штаудингер (1924). Оказалось, что каучук является иЬлимером изопрена  [c.142]

    Элементарная вулканизационная структура в свете этих данных представляет собой сложное образование, в котором химические поперечные связи и другие группировки (также элементы вулканизационной структуры) соединены друг с другом межмолекулярными или химическими связями. Образование ассоциированных вулканизационных структур связано с химическими или физическими процессами, ведущими к формированию трехмерной сетки, и не связано непосредственно с представлениями об упорядоченном строении каучука. Например, такие линейные полимеры, как термоэластопла-сты, обладают вплоть до температуры 100 °С (и выше) комплексом свойств вулканизата. Узлами сетки в них [c.6]

    Сторонники этих представлений связывали роль ускорителей при вулканизации помимо прочего также и с их поверхностно-активными свойствами, способностью вследствие этого адсорбироваться на поверхности мицелл (Норлэндер) и пептизировать продукты первичной стадии взаимодействия каучука и серы (Вильямс, 1934 г.). Вместе с тем высказывались положения, которые в дальнейшем были забыты вместе с мицеллярной теорией строения каучука, но не утратили интереса и до наших дней. Так, Б. А. Догадкин [3] считал, что ускорители являются пептизаторами не мицелл каучука, а частиц серы, и полагал, что следствием этого процесса является ускорение гетерогенной реакции серы с каучуком в результате увеличения поверхности раздела между ними. Не менее интересны воззрения Фейхтера [1, с. 368], который в 1924 г. высказал предположение, что с каучуком реагируют активные продукты взаимодействия серы и ускорителя (без выделения активной серы), а ускоритель, не вступивший в реакцию, сохраняется в вулканизате в виде твердых кристаллических частиц (образующих, конечно, конденсационно-кристаллическую коллоидную структуру). [c.12]

    При разрушении полимерных сеток обязательно должны быть порваны валентные связи, в частности, в вулканизатах карбоцелных полимеров связь —С—С—. При одинаковой густоте сеток для их разрушения должно быть порвано одинаковое число валентных связей и, следовательно, прочность таких сеток должна была бы быть одинаковой дл я всех каучуков карбоцепного строения. Однако при различной структуре молекулярных цепей даже в одних и тех же условиях деформации сетки валентные связи оказываются в различных условиях нагружения, и поэтому прочность резин варьируется в очень широких пределах в зависимости от химического состава и строения каучуков, их молекулярного веса, МВР и разветвленности. Наиболее высокие прочности наблюдаются у резин из каучуков стереорегулярного строения, способных к кристаллизации. Менее прочные резины получаются из нестереорегулярных каучуков, неспособных к кристаллизации [c.60]

    Эти различия связаны также и с тем, что химический состав и строение каучуков влияют на формирование структуры вулканизационной сетки, прежде всего на соотношение ее активной и неактивной доли, поскольку химическое строение каучуков влияет на развитие процессов деструкции и модификации цепей, протекающих при вулканизации одновременно с про цессо м стр укту р ир он а ния. [c.61]

    Синтез дивинила из этилового спирта по методу С. В. Лебедева. Работы Ю. А. Горина по изучению механизма этого процесса. Синтез дивинила по методу Кучерова-Остромысленского. Синтез дивинила на базе естественного газа и газов крекинга нефти. Синтез изопрена, хлоропрена, изобутилена. Полимеризация с помощью металлического натрия. Строение и свойства иатрий-дивинилового каучука. Эмульсионная полимеризация. Технология и механизм процесса. Овойства и строение каучуков Буна-Ы, Буна-5 и хлоропренового. Полимеризация в растворах. Полиизобутиленовые каучуки. Поликонденсация. Полисульфидные каучуки и др. [c.234]

    Чтобы исключить эти трудности, при исследовании строения каучуков были использованы различные способы приготовления образцов. Применялись различные растворители либо их смеси для того, чтобы ухудшить растворимость каучуков и тем самым создать условия для лучшего проявления элементов структуры. Кроме того, приготовление образцов при пониженной температуре также способствовало выявлению более тонкой структуры. Наконец, был нрименен метод растяжения пленок с целью частичного разрушения их структуры, что позволило бы наблюдать как изменения, так и отдельные элементы структуры. Для увеличения контрастности образцы оттенялись палладием. [c.138]


Библиография для Строение каучуков: [c.102]   
Смотреть страницы где упоминается термин Строение каучуков: [c.50]    [c.52]    [c.226]    [c.330]    [c.226]    [c.13]    [c.115]    [c.201]   
Смотреть главы в:

Технология резины -> Строение каучуков

Технология резины -> Строение каучуков

Химия больших молекул Сборник 1 -> Строение каучуков




ПОИСК







© 2025 chem21.info Реклама на сайте