Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение концентрации кислорода в продуктах горения

    В воздухе, как известно, содержится около 1% аргона (см. табл. 1-2). В продуктах горения концентрация аргона, вносимого в топочную камеру с воздухом, естественно, больше, чем в воздухе она зависит от коэффициента избытка воздуха и от вида сжигаемого топлива. На сигнал детектора по теплопроводности, получаемый при прохождении аргона через рабочую камеру, когда в качестве газа-носителя используется гелий), будет накладываться сигнал, возникающий от присутствия в анализируемой смеси кислорода (см. рис. 5-23). В связи с этим погрешность за счет наличия в пробе аргона при определении малых количеств кислорода в продуктах горения (до 1—2%) будет соизмерима с определяемой величиной кислорода. [c.152]


    Для определения серы использовано предварительное сожжение в колбе с кислородом (см. табл. 10). В зависимости от состояния окисления, в котором сера присутствует в анализируемом веществе, продукты горения содержат ЗОг и ЗОз в различных соотношениях. Для переведения всей серы в серный ангидрид и далее в растворе — в ионы сульфата продукты горения поглощают слабым раствором пероксида водорода. После разрушения избытка пероксида кипячением сульфат-ион определяют титрованием солью бария. Для уменьшения растворимости образующегося сульфата бария, т. е. для обеспечения получения количественных результатов, а также для ускорения титрования его ведут в водно-органической среде. В качестве растворителя часто рекомендуют ацетон. Для избежания работы с этим токсичным реагентом его можно заменить этиловым спиртом-ректификатом или гидролизным спиртом. Растворители применяют в виде 80%-ного водного раствора. Такая концентрация еще сохраняет возможность быстрого протекания ионной реакции осаждения и в то же время способствует наиболее четкому цветовому переходу применяемого индикатора в КТТ. [c.233]

    Снижение концентраций кислорода вызывает у человека не только определенный физиологический эффект, но и усиливает токсическое действие образующихся продуктов разложения и горения. [c.18]

    Смесь горючих паров и газов с воздухом становится взрывоопасной только при достижении определенной концентрации. Если в смеси много кислорода и мало горючих газов и паров, то даже при наличии огня взрыв может не произойти, так как из-за недостатка горючего продукты горения не достигают достаточно высокой температуры. При пересыщенной смеси взрыв также не происходит из-за недостатка кислорода. Таким образом, взрывоопасная концентрация смеси зависит от количества находящихся в воздухе паров легковоспламеняющихся жидкостей или горючих газов и имеет нижний и верхний пределы, ниже и выше которых взрыв не происходит даже при наличии источника зажигания. [c.141]

    Работа Б. Туна [ 34], основанная на определении концентрации сажи и других компонентов продуктов горения в первичной зоне камеры, а также в зоне подвода воздуха через основные отверстия жаровой трубы, характеризуется тщательностью проведенного исследования и является значительным вкладом в изучение процессов образования и выгорания сажи в камерах сгорания ГТД. На рис. 5.18 представлено заимствованное из работы [34] распределение концентраций сажи и кислорода в одном из сечений первичной зоны при давлении в камере сгорания, [c.107]


    Жидкое топливо — масло или смола — горит как жидкость только в определенных условиях. При использовании в промышленности форсунок оно горит после превращения в парообразное состояние, так как температура воспламенения его всегда выше температуры кипения. При горении капли масла горят только пары масла, образующиеся над поверхностью капли на расстоянии, на котором концентрация воздуха достигает нижнего предела воспламенения. После смешения паров масла с воздухом наступает горение во всей массе. Получение совершенного распыления жидкого топлива и смешение его с воздухом очень важно по следующим соображениям топливное масло состоит из многоатомных молекул, которые под действием тепла легко расщепляются, при этом, с одной стороны, возникают молекулы с меньшим и большим молекулярным весом, чем молекулы топлива, с другой стороны, выделяется элементарный углерод. Если в этой стадии теплового расщепления одновременно имеется недостаток кислорода, то на холодной поверхности, например, на стене печи, трубы и т. п., откладывается сажистый углерод, часть его смешивается с продуктами сгорания, и если он не уносится, то происходит загрязнение печп. [c.35]

    При горении углеродной поверхности частицы кислород расходуется и непрерывно подводится из окружающего газового объема. Продукты сгорания отводятся от поверхности. Таким образом, химический процесс горения (взаимодействия кислорода с углеродом) сопровождается физическим процессом встречной диффузии. Следствием одновременного протекания этих процессов является определенное распределение концентраций (парциальных давлений) про- [c.150]

    Давно известно, что ацетилен присутствует в продуктах неполного сгорания углеводородов, например при проскоке пламени в бунзеновской горелке. Чтобы получить достаточно высокую концентрацию ацетилена в отходящих газах, обычно вместо воздуха применяют кислород, претем сырье и кислород должны быть предварительно подогреты. Определение режима подогрева, а также формы и размеров горелки, необходимое для получения стабильного пламени в промышленных условиях, потребовало. чначительпых исследований, прежде чем процесс был осуществлен фирмой I. G. Farbenindustrie (Германия) во время войны па установке, которая, по существу, являлась укрупненной пилотной установкой. Прошло еще десять лет прежде чем были пущены первые промышленные установки (в 1953 г.). В последнее десятилетие процесс быстро распространился, заводы появились в нескольких странах, причем были использованы различные модификации первоначально разработанного метода. К 1962 г. около 350 ООО т ацетилена, т. е. около одной седьмой его мирового производства, получали методом окислительного пиролиза, потребляя при этом 1,5 млн. т кислорода. Недавно было высказано предположение [1], что процесс пиролиза начинается по окончании процесса горения. Хотя это утверждение справедливо только приближенно (стр. 396), оно позволяет точно предсказывать результаты процесса. Поскольку кинетика пиролиза уже была рассмотрена (стр. 334), ниже обсуждается только кинетика стадии горения. Энергия активации для смесей, богатых метаном, составляет 62 ккал/молъ. Механизм горения был предложен Норришем [3]  [c.380]

    Макрокинетические исследования гомогенных реакций производятся обычно двумя методами. Первый состоит в измерении разности концентраций горючей смеси, протекающей через реакционный сосуд. По этой методике проводились опыты Каржавиной по определению скорости горения окиси углерода в смеси с азотом и кислородом. Применяется также исследование процесса выгорания горючей смеси в замкнутом сосуде. Ход реакции определяется по снижению парциального давления реагирующего газа при вымораживании образующегося продукта (жидким воздухом и т. д.). [c.173]

    Много внимания авторами уделено кинетическим расчетам и измерениям характеристических скоростей экспоненциального роста концентрации атомов и радикалов в периоде индукции. Из сравнения расчетов с экспериментальными данными удалось с высокой точностью получить константы скоростей практически всех важнейших элементарных стадий реакции водорода с кислородом. Широко обсуждается и иллюстрируется конкретными примерами концепция частичного равновесия — весьма обш,ий и эффективный подход к анализу кинетики сложных систем, которому в работах советских авторов уделяется незаслуженно мало внимания. В частности, этот подход во многих случаях позволяет обойтись без решения системы кинетических дифференциальных уравнений и свести задачу описания текущего состава реагирующей системы к единственному измеряемому параметру. Концепция частичного равновесия особенно полезна при определении констант скоростей рекомбинационных процессов, определяющих скорость перехода к термодинамическому равновесию и скорость выделения энергии. В последнее время появились работы, в которых эта концепция успешно применяется для нахождения текущего состава продуктов горения углеводородных пламен, а также для определения концентрации токсичных продуктов горения в выхлопе двигателей внутреннего сгорания. В этой главе чрезмерно упрощенно изложены общие вопросы теарии цепных реакций и в особенности теория критических явлений в газофазной кинетике. Эти вопросы более подробно освещены в монографиях [7, 8]. Кроме того, в работах сотрудников ИХФ АН СССР (см., например, [9, 10]) недавно получены новые результаты, относящиеся к процессу воспламенения водорода с кислородом. В частности, продемонстрирована сложная роль процессов гетерогенного обрыва цепей, а также выяснена роль саморазогрева в разветвленном цепном процессе на различных стадиях воспламенения. [c.8]


    Газы, которые состоят из атомов одного и того же рода, характеризуются тем, что атомы не обладают заряда.ми свободного электричества. Такие газы, как водород, кислород и азот, не излучают тепловой энергии и совершенно прозрачны для тепловых лучей, излучаемых каким-нибудь посторонни телом. Для технических расчетов большое значение имеет тепловое излучение углекислого газа и водяных паров, так как оба эти газа являются хорошими излучателями и присутствуют в больших количествах в газообразных продуктах горения. Окись углерода сернистый ангидрид и метан также хорошо излучают тепловую энергию, но присутствуют обычно в небольших концентрациях. На рис. 13-1 6 и 13-17 показаны спектры поглощения углекислоты и водяното пара. Из этих рисунков видно, что газы ведут себя не так, как твердые и жидкие тела, поскольку они излучают и поглощают лучистую энергию лишь определенных узких областей спектра. Для водяного пара эти области лежат сравнительно близко друг к другу. Излучение происходит главным образом в области с длиной волн более 1 мк, поэтому оно невидимо для глаза. Из ри-468 [c.468]

    Способность трубчатых горелок со смесеобразующими факелами (за счет окружающего воздуха, в который втекает топливный газ) удерживать пламя около своего устья в основном объясняется тем, что в зоне смешения воздуха с газом, в которой состав смеси постепенно меняется от чистого воздуха по краям до чистого топливного газа в центре струи, всегда найдется и такой участок смеси, который будет соответствовать наилучшим условиям воспламенения при определенной температуре этой смеси, постепенно прогревающейся по мере приближения к фронту горения. На фиг. 43 дана упрощенная схема образования зон смешения воздуха, топливного газа и продуктов сгорания, на которой (ВИДНО, как постепенно падает со стороны воздуха содержание кислорода в зоне 1П и топлива со стороны потока топливного газа в зоне ///г при подходе их к линии расчетных соотношений ( а = = 1), где они соединяются с образованием молекул полного сгорания. Понятно, что на этой ли-нйи расчетных соотношений при ходе реакции горения будет возникать наибольшая концентрация продуктов сгорания и отсюда они будут распространяться с постепенно падающим содержанием их в смеси в обе стороны в сторону чистого воздуха и в сторону чистого газа. Кривая температуры такой тройной смеси, как попятно, будет подобна кривой изменения содержания продуктов сгорания с вершиной на линии расчет  [c.126]

    Первым обширным исследованием, проведенным с помощью масс-спектрометра, была работа Лейфера и Ури [23], которые изучали пиролиз диметилового эфира и ацетальдегида. Хотя им и не удалось обнаружить радикалы, но они смогли показать, что промежуточным продуктом разложения диметилового эфира является формальдегид, и проследить его концентрацию. Более успешной была попытка Эльтентона [24, 25], которому удалось сконструировать установку, способную обнаружить свободные радикалы при пиролитических реакциях и в пламенах даже при высоких давлениях (около 160 мм рт. ст.). Он также смог обнаружить присутствие радикалов СНз при пиролизе углеводородов, радикалов СНа из H2N2, а также СНО и СНз при горении СН4 в кислороде. Метод определения основан в принципе на том, что энергия электронов, необходимая для ионизации радикалов, меньше энергии электронов, необходимой для образования ионизированных частиц из самих исходных молекул. Это дает возможность определять малые количества радикалов в присутствии больших количеств соединений, собственные спектры которых затмевают спектры радикалов. [c.97]


Смотреть страницы где упоминается термин Определение концентрации кислорода в продуктах горения: [c.340]    [c.17]   
Смотреть главы в:

Сжигание высокосернистого мазута на электростанциях -> Определение концентрации кислорода в продуктах горения




ПОИСК





Смотрите так же термины и статьи:

Горение в кислороде

Кислород определение

Концентрация кислорода

Концентрация определение



© 2024 chem21.info Реклама на сайте